Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Tuning fatty acid oxidation in skeletal muscle with dietary fat and exercise

Abstract

Both the consumption of a diet rich in fatty acids and exercise training result in similar adaptations in several skeletal muscle proteins. These adaptations are involved in fatty acid uptake and activation within the myocyte, the mitochondrial import of fatty acids and further metabolism of fatty acids by β-oxidation. Fatty acid availability is repeatedly increased postprandially during the day, particularly during high dietary fat intake and also increases during, and after, aerobic exercise. As such, fatty acids are possible signalling candidates that regulate transcription of target genes encoding proteins involved in muscle lipid metabolism. The mechanism of signalling might be direct or indirect targeting of peroxisome proliferator-activated receptors by fatty acid ligands, by fatty acid-induced NAD+-stimulated activation of sirtuin 1 and/or fatty acid-mediated activation of AMP-activated protein kinase. Lactate might also have a role in lipid metabolic adaptations. Obesity is characterized by impairments in fatty acid oxidation capacity, and individuals with obesity show some rigidity in increasing fatty acid oxidation in response to high fat intake. However, individuals with obesity retain improvements in fatty acid oxidation capacity in response to exercise training, thereby highlighting exercise training as a potential method to improve lipid metabolic flexibility in obesity.

Key points

  • Both high fat intake and aerobic exercise training increase the abundance and activity of several lipid metabolic proteins in skeletal muscle related to fatty acid uptake, handling and mitochondrial import.

  • Mitochondrial biogenesis is induced primarily by aerobic exercise training and not by high fat intake in humans, probably due to increased ATP turnover occurring only during exercise.

  • Fatty acid availability seems to be a key signal for adaptations in muscle proteins involved in lipid metabolism as fatty acids act as ligands for peroxisome proliferator-activated receptors and through β-oxidation-driven sirtuin 1 signalling.

  • Obesity is characterized by impairments in fatty acid oxidation capacity, but aerobic exercise training is a potent tool to restore such impairments by induction of lipid metabolic proteins in muscle.

  • An efficient capacity to handle and oxidize fatty acids, and the ability to adapt fatty acid utilization to fatty acid availability, seem to be of great importance for both lipid and glucose homeostasis and insulin action.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Skeletal muscle adaptations to high dietary fat intake and aerobic exercise training.
Fig. 2: A model suggesting fatty acids as a signal for lipid metabolism adaptations.

Similar content being viewed by others

References

  1. Battaglia, G. M., Zheng, D., Hickner, R. C. & Houmard, J. A. Effect of exercise training on metabolic flexibility in response to a high-fat diet in obese individuals. Am. J. Physiol. Endocrinol. Metab. 303, E1440–E1445 (2012). This study shows that individuals with obesity are inflexible in adapting lipid metabolism to a high-fat diet, but exercise training can induce lipid metabolic improvements in individuals with obesity.

    CAS  Google Scholar 

  2. Lundsgaard, A. M. et al. Mechanisms preserving insulin action during high dietary fat intake. Cell Metab. 29, 229 (2019). A paper showing that 6 weeks of a eucaloric high-fat diet in young men preserves insulin sensitivity and induces lipid metabolic adaptations.

    CAS  Google Scholar 

  3. Chokkalingam, K. et al. High-fat/low-carbohydrate diet reduces insulin-stimulated carbohydrate oxidation but stimulates nonoxidative glucose disposal in humans: an important role for skeletal muscle pyruvate dehydrogenase kinase 4. J. Clin. Endocrinol. Metab. 92, 284–292 (2007).

    CAS  Google Scholar 

  4. Thomas, C. D. et al. Nutrient balance and energy expenditure during ad libitum feeding of high-fat and high-carbohydrate diets in humans. Am. J. Clin. Nutr. 55, 934–942 (1992). Research demonstrating that high-fat diet intake increases fatty acid oxidation in lean individuals but not in individuals with obesity.

    CAS  Google Scholar 

  5. Blaak, E. E. et al. Fat oxidation before and after a high fat load in the obese insulin-resistant state. J. Clin. Endocrinol. Metab. 91, 1462–1469 (2006).

    CAS  Google Scholar 

  6. Allick, G. et al. A low-carbohydrate/high-fat diet improves glucoregulation in type 2 diabetes mellitus by reducing postabsorptive glycogenolysis. J. Clin. Endocrinol. Metab. 89, 6193–6197 (2004).

    CAS  Google Scholar 

  7. Kiens, B., Essen-Gustavsson, B., Christensen, N. J. & Saltin, B. Skeletal muscle substrate utilization during submaximal exercise in man: effect of endurance training. J. Physiol. 469, 459–478 (1993). A study revealing that exercise training improves the ability to oxidize fatty acids during exercise in humans.

    CAS  Google Scholar 

  8. Christensen, E. H. & Hansen, O. V. Respiratorisher quotient und O2-aufnahme [German]. Skand. Arch. Physiol. 81, 160–171 (1939).

    Google Scholar 

  9. Blaak, E. E. Basic disturbances in skeletal muscle fatty acid metabolism in obesity and type 2 diabetes mellitus. Proc. Nutr. Soc. 63, 323–330 (2004).

    CAS  Google Scholar 

  10. Kelley, D. E., Goodpaster, B., Wing, R. R. & Simoneau, J. A. Skeletal muscle fatty acid metabolism in association with insulin resistance, obesity, and weight loss. Am. J. Physiol. 277, E1130–E1141 (1999).

    CAS  Google Scholar 

  11. Lithell, H., Jacobs, I., Vessby, B., Hellsing, K. & Karlsson, J. Decrease of lipoprotein lipase activity in skeletal muscle in man during a short-term carbohydrate-rich dietary regime. With special reference to HDL-cholesterol, apolipoprotein and insulin concentrations. Metabolism 31, 994–998 (1982).

    CAS  Google Scholar 

  12. Kiens, B., Essen-Gustavsson, B., Gad, P. & Lithell, H. Lipoprotein lipase activity and intramuscular triglyceride stores after long-term high-fat and high-carbohydrate diets in physically trained men. Clin. Physiol. 7, 1–9 (1987).

    CAS  Google Scholar 

  13. Kiens, B. et al. Lipid-binding proteins and lipoprotein lipase activity in human skeletal muscle: influence of physical activity and gender. J. Appl. Physiol. 97, 1209–1218 (2004).

    CAS  Google Scholar 

  14. Nikkila, E. A., Taskinen, M. R., Rehunen, S. & Harkonen, M. Lipoprotein lipase activity in adipose tissue and skeletal muscle of runners: relation to serum lipoproteins. Metabolism 27, 1661–1667 (1978).

    CAS  Google Scholar 

  15. Svedenhag, J., Lithell, H., Juhlin-Dannfelt, A. & Henriksson, J. Increase in skeletal muscle lipoprotein lipase following endurance training in man. Atherosclerosis 49, 203–207 (1983).

    CAS  Google Scholar 

  16. Kiens, B. & Lithell, H. Lipoprotein metabolism influenced by training-induced changes in human skeletal muscle. J. Clin. Invest. 83, 558–564 (1989).

    CAS  Google Scholar 

  17. Chabowski, A., Garski, J., Luiken, J. J., Glatz, J. F. & Bonen, A. Evidence for concerted action of FAT/CD36 and FABPpm to increase fatty acid transport across the plasma membrane. Prostaglandins Leukot. Essent. Fatty Acids 77, 345–353 (2007).

    CAS  Google Scholar 

  18. Jordy, A. B. et al. Insulin sensitivity is independent of lipid binding protein trafficking at the plasma membrane in human skeletal muscle: effect of a 3-day, high-fat diet. Am. J. Physiol. Regul. Integr. Comp. Physiol. 307, R1136–R1145 (2014).

    CAS  Google Scholar 

  19. Cameron-Smith, D. et al. A short-term, high-fat diet up-regulates lipid metabolism and gene expression in human skeletal muscle. Am. J. Clin. Nutr. 77, 313–318 (2003).

    CAS  Google Scholar 

  20. Tunstall, R. J. et al. Exercise training increases lipid metabolism gene expression in human skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 283, E66–E72 (2002).

    CAS  Google Scholar 

  21. Talanian, J. L. et al. Exercise training increases sarcolemmal and mitochondrial fatty acid transport proteins in human skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 299, E180–E188 (2010). This paper shows that exercise training increases lipid transporters at the sarcolemma in human skeletal muscle.

    CAS  Google Scholar 

  22. Perry, C. G., Heigenhauser, G. J., Bonen, A. & Spriet, L. L. High-intensity aerobic interval training increases fat and carbohydrate metabolic capacities in human skeletal muscle. Appl. Physiol. Nutr. Metab. 33, 1112–1123 (2008).

    CAS  Google Scholar 

  23. Wolfrum, C. Cytoplasmic fatty acid binding protein sensing fatty acids for peroxisome proliferator activated receptor activation. Cell Mol. Life Sci. 64, 2465–2476 (2007).

    CAS  Google Scholar 

  24. Kiens, B., Kristiansen, S., Jensen, P., Richter, E. A. & Turcotte, L. P. Membrane associated fatty acid binding protein (FABPpm) in human skeletal muscle is increased by endurance training. Biochem. Biophys. Res. Commun. 231, 463–465 (1997).

    CAS  Google Scholar 

  25. Jeppesen, J. et al. Enhanced fatty acid oxidation and FATP4 protein expression after endurance exercise training in human skeletal muscle. PLoS ONE 7, e29391 (2012).

    CAS  Google Scholar 

  26. Talanian, J. L., Galloway, S. D., Heigenhauser, G. J., Bonen, A. & Spriet, L. L. Two weeks of high-intensity aerobic interval training increases the capacity for fat oxidation during exercise in women. J. Appl. Physiol. 102, 1439–1447 (2007).

    CAS  Google Scholar 

  27. Simoneau, J. A., Veerkamp, J. H., Turcotte, L. P. & Kelley, D. E. Markers of capacity to utilize fatty acids in human skeletal muscle: relation to insulin resistance and obesity and effects of weight loss. FASEB J. 13, 2051–2060 (1999).

    CAS  Google Scholar 

  28. Roepstorff, C., Helge, J. W., Vistisen, B. & Kiens, B. Studies of plasma membrane fatty acid-binding protein and other lipid-binding proteins in human skeletal muscle. Proc. Nutr. Soc. 63, 239–244 (2004).

    CAS  Google Scholar 

  29. Kazantzis, M. & Stahl, A. Fatty acid transport proteins, implications in physiology and disease. Biochim. Biophys. Acta 1821, 852–857 (2012).

    CAS  Google Scholar 

  30. Lefai, E. et al. Exercise training improves fat metabolism independent of total energy expenditure in sedentary overweight men, but does not restore lean metabolic phenotype. Int. J. Obes. 41, 1728–1736 (2017).

    CAS  Google Scholar 

  31. Goedecke, J. H. et al. Metabolic adaptations to a high-fat diet in endurance cyclists. Metabolism 48, 1509–1517 (1999).

    CAS  Google Scholar 

  32. Fisher E. C., et al. in Biochemistry of Exercise (eds Knuttgen, H. G., Vogel, J. A. & Poortmans, J.) 497–501 (Human Kinetics, 1983).

  33. Jong-Yeon, K., Hickner, R. C., Dohm, G. L. & Houmard, J. A. Long- and medium-chain fatty acid oxidation is increased in exercise-trained human skeletal muscle. Metabolism 51, 460–464 (2002).

    Google Scholar 

  34. Berthon, P. M., Howlett, R. A., Heigenhauser, G. J. & Spriet, L. L. Human skeletal muscle carnitine palmitoyltransferase I activity determined in isolated intact mitochondria. J. Appl. Physiol. 85, 148–153 (1998).

    CAS  Google Scholar 

  35. Starritt, E. C., Howlett, R. A., Heigenhauser, G. J. & Spriet, L. L. Sensitivity of CPT I to malonyl-CoA in trained and untrained human skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 278, E462–E468 (2000).

    CAS  Google Scholar 

  36. Bruce, C. R. et al. Endurance training in obese humans improves glucose tolerance and mitochondrial fatty acid oxidation and alters muscle lipid content. Am. J. Physiol. Endocrinol. Metab. 291, E99–E107 (2006).

    CAS  Google Scholar 

  37. Lundsgaard, A. M. et al. Opposite regulation of insulin sensitivity by dietary lipid versus carbohydrate excess. Diabetes 66, 2583–2595 (2017).

    CAS  Google Scholar 

  38. Sparks, L. M. et al. High-fat/low-carbohydrate diets regulate glucose metabolism via a long-term transcriptional loop. Metabolism 55, 1457–1463 (2006).

    CAS  Google Scholar 

  39. Arkinstall, M. J., Tunstall, R. J., Cameron-Smith, D. & Hawley, J. A. Regulation of metabolic genes in human skeletal muscle by short-term exercise and diet manipulation. Am. J. Physiol. Endocrinol. Metab. 287, E25–E31 (2004).

    CAS  Google Scholar 

  40. Bergouignan, A. et al. Increasing dietary fat elicits similar changes in fat oxidation and markers of muscle oxidative capacity in lean and obese humans. PLoS ONE 7, e30164 (2012).

    CAS  Google Scholar 

  41. Boyle, K. E. et al. A high-fat diet elicits differential responses in genes coordinating oxidative metabolism in skeletal muscle of lean and obese individuals. J. Clin. Endocrinol. Metab. 96, 775–781 (2011). This paper demonstrates that a high-fat diet increases the expression of lipid metabolic genes in lean individuals but not in individuals with obesity.

    CAS  Google Scholar 

  42. Peters, S. J. et al. Human skeletal muscle PDH kinase activity and isoform expression during a 3-day high-fat/low-carbohydrate diet. Am. J. Physiol. Endocrinol. Metab. 281, E1151–E1158 (2001).

    CAS  Google Scholar 

  43. Pehleman, T. L., Peters, S. J., Heigenhauser, G. J. & Spriet, L. L. Enzymatic regulation of glucose disposal in human skeletal muscle after a high-fat, low-carbohydrate diet. J. Appl. Physiol. 98, 100–107 (2005).

    CAS  Google Scholar 

  44. Peters, S. J., St Amand, T. A., Howlett, R. A., Heigenhauser, G. J. & Spriet, L. L. Human skeletal muscle pyruvate dehydrogenase kinase activity increases after a low-carbohydrate diet. Am. J. Physiol. 275, E980–E986 (1998).

    CAS  Google Scholar 

  45. Turvey, E. A., Heigenhauser, G. J., Parolin, M. & Peters, S. J. Elevated n-3 fatty acids in a high-fat diet attenuate the increase in PDH kinase activity but not PDH activity in human skeletal muscle. J. Appl. Physiol. 98, 350–355 (2005).

    CAS  Google Scholar 

  46. St Amand, T. A., Spriet, L. L., Jones, N. L. & Heigenhauser, G. J. Pyruvate overrides inhibition of PDH during exercise after a low-carbohydrate diet. Am. J. Physiol. Endocrinol. Metab. 279, E275–E283 (2000).

    Google Scholar 

  47. Stellingwerff, T. et al. Decreased PDH activation and glycogenolysis during exercise following fat adaptation with carbohydrate restoration. Am. J. Physiol. Endocrinol. Metab. 290, E380–E388 (2006).

    CAS  Google Scholar 

  48. Helge, J. W. et al. Four weeks one-leg training and high fat diet does not alter PPARalpha protein or mRNA expression in human skeletal muscle. Eur. J. Appl. Physiol. 101, 105–114 (2007).

    CAS  Google Scholar 

  49. LeBlanc, P. J., Peters, S. J., Tunstall, R. J., Cameron-Smith, D. & Heigenhauser, G. J. Effects of aerobic training on pyruvate dehydrogenase and pyruvate dehydrogenase kinase in human skeletal muscle. J. Physiol. 557, 559–570 (2004).

    CAS  Google Scholar 

  50. Gudiksen, A. et al. Training state and fasting-induced PDH regulation in human skeletal muscle. Pflugers Arch. 470, 1633–1645 (2018).

    CAS  Google Scholar 

  51. Anderson, A. S. et al. Early skeletal muscle adaptations to short-term high-fat diet in humans before changes in insulin sensitivity. Obesity 23, 720–724 (2015).

    CAS  Google Scholar 

  52. Skovbro, M., Boushel, R., Hansen, C. N., Helge, J. W. & Dela, F. High-fat feeding inhibits exercise-induced increase in mitochondrial respiratory flux in skeletal muscle. J. Appl. Physiol. 110, 1607–1614 (2011).

    CAS  Google Scholar 

  53. Helge, J. W. & Kiens, B. Muscle enzyme activity in humans: role of substrate availability and training. Am. J. Physiol. 272, R1620–R1624 (1997).

    CAS  Google Scholar 

  54. Alsted, T. J. et al. Adipose triglyceride lipase in human skeletal muscle is upregulated by exercise training. Am. J. Physiol. Endocrinol. Metab. 296, E445–E453 (2009).

    CAS  Google Scholar 

  55. Daugaard, J. R. et al. Fiber type-specific expression of GLUT4 in human skeletal muscle: influence of exercise training. Diabetes 49, 1092–1095 (2000).

    CAS  Google Scholar 

  56. Kristiansen, S., Gade, J., Wojtaszewski, J. F., Kiens, B. & Richter, E. A. Glucose uptake is increased in trained vs. untrained muscle during heavy exercise. J. Appl. Physiol. 89, 1151–1158 (2000).

    CAS  Google Scholar 

  57. Burgomaster, K. A. et al. Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. J. Physiol. 586, 151–160 (2008).

    CAS  Google Scholar 

  58. Leckey, J. J. et al. High dietary fat intake increases fat oxidation and reduces skeletal muscle mitochondrial respiration in trained humans. FASEB J. 32, 2979–2991 (2018).

    CAS  Google Scholar 

  59. Vigelso, A., Andersen, N. B. & Dela, F. The relationship between skeletal muscle mitochondrial citrate synthase activity and whole body oxygen uptake adaptations in response to exercise training. Int. J. Physiol. Pathophysiol. Pharmacol. 6, 84–101 (2014).

    Google Scholar 

  60. Fritzen, A. M. et al. Adaptations in mitochondrial enzymatic activity occurs independent of genomic dosage in response to aerobic exercise training and deconditioning in human skeletal muscle. Cells 8, 237 (2019).

    CAS  Google Scholar 

  61. Fiorenza, M. et al. High-intensity exercise training enhances mitochondrial oxidative phosphorylation efficiency in a temperature-dependent manner in human skeletal muscle: implications for exercise performance. FASEB J. 33, 8976–8989 (2019).

    CAS  Google Scholar 

  62. Pesta, D. et al. Similar qualitative and quantitative changes of mitochondrial respiration following strength and endurance training in normoxia and hypoxia in sedentary humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 301, R1078–R1087 (2011).

    CAS  Google Scholar 

  63. Hancock, C. R. et al. High-fat diets cause insulin resistance despite an increase in muscle mitochondria. Proc. Natl Acad. Sci. USA 105, 7815–7820 (2008).

    CAS  Google Scholar 

  64. Turner, N. et al. Excess lipid availability increases mitochondrial fatty acid oxidative capacity in muscle: evidence against a role for reduced fatty acid oxidation in lipid-induced insulin resistance in rodents. Diabetes 56, 2085–2092 (2007).

    CAS  Google Scholar 

  65. Simi, B., Sempore, B., Mayet, M. H. & Favier, R. J. Additive effects of training and high-fat diet on energy metabolism during exercise. J. Appl. Physiol. 71, 197–203 (1991).

    CAS  Google Scholar 

  66. van den Broek, N. M. et al. Increased mitochondrial content rescues in vivo muscle oxidative capacity in long-term high-fat-diet-fed rats. FASEB J. 24, 1354–1364 (2010).

    Google Scholar 

  67. Kleinert, M. et al. Quantitative proteomic characterization of cellular pathways associated with altered insulin sensitivity in skeletal muscle following high-fat diet feeding and exercise training. Sci. Rep. 8, 10723–28540 (2018). This proteomics analysis reveals that a high-fat diet and exercise training induces several similar lipid metabolic adaptations in skeletal muscle of mice.

    Google Scholar 

  68. Berggren, J. R., Boyle, K. E., Chapman, W. H. & Houmard, J. A. Skeletal muscle lipid oxidation and obesity: influence of weight loss and exercise. Am. J. Physiol. Endocrinol. Metab. 294, E726–E732 (2008).

    CAS  Google Scholar 

  69. Bisschop, P. H. et al. Dietary fat content alters insulin-mediated glucose metabolism in healthy men. Am. J. Clin. Nutr. 73, 554–559 (2001).

    CAS  Google Scholar 

  70. Cutler, D. L. et al. Low-carbohydrate diet alters intracellular glucose metabolism but not overall glucose disposal in exercise-trained subjects. Metabolism 44, 1264–1270 (1995).

    CAS  Google Scholar 

  71. Lundsgaard, A. M., Fritzen, A. M. & Kiens, B. The importance of fatty acids as nutrients during post-exercise recovery. Nutrients 12, nu12020280 (2020).

    Google Scholar 

  72. Bergman, B. C. et al. Evaluation of exercise and training on muscle lipid metabolism. Am. J. Physiol. 276, E106–E117 (1999).

    CAS  Google Scholar 

  73. Horowitz, J. F., Leone, T. C., Feng, W., Kelly, D. P. & Klein, S. Effect of endurance training on lipid metabolism in women: a potential role for PPARalpha in the metabolic response to training. Am. J. Physiol. Endocrinol. Metab. 279, E348–E355 (2000).

    CAS  Google Scholar 

  74. Helge, J. W., Richter, E. A. & Kiens, B. Interaction of training and diet on metabolism and endurance during exercise in man. J. Physiol. 492, 293–306 (1996). This study found that 7 weeks of a high-fat diet and exercise training improves the lipid metabolic system.

    CAS  Google Scholar 

  75. Van, P. K., Szlufcik, K., Nielens, H., Ramaekers, M. & Hespel, P. Beneficial metabolic adaptations due to endurance exercise training in the fasted state. J. Appl. Physiol. 110, 236–245 (2011).

    Google Scholar 

  76. Friedlander, A. L., Casazza, G. A., Horning, M. A., Buddinger, T. F. & Brooks, G. A. Effects of exercise intensity and training on lipid metabolism in young women. Am. J. Physiol. 275, E853–E863 (1998).

    CAS  Google Scholar 

  77. Merrill, J. R. et al. Hyperlipemic response of young trained and untrained men after a high fat meal. Arteriosclerosis 9, 217–223 (1989).

    CAS  Google Scholar 

  78. Cohen, J. C., Noakes, T. D. & Benade, A. J. Postprandial lipemia and chylomicron clearance in athletes and in sedentary men. Am. J. Clin. Nutr. 49, 443–447 (1989).

    CAS  Google Scholar 

  79. Podl, T. R. et al. Lipoprotein lipase activity and plasma triglyceride clearance are elevated in endurance-trained women. Metabolism 43, 808–813 (1994).

    CAS  Google Scholar 

  80. Dixon, N. C., Hurst, T. L., Talbot, D. C., Tyrrell, R. M. & Thompson, D. Active middle-aged men have lower fasting inflammatory markers but the postprandial inflammatory response is minimal and unaffected by physical activity status. J. Appl. Physiol. 107, 63–68 (2009).

    CAS  Google Scholar 

  81. Ziogas, G. G., Thomas, T. R. & Harris, W. S. Exercise training, postprandial hypertriglyceridemia, and LDL subfraction distribution. Med. Sci. Sports Exerc. 29, 986–991 (1997).

    CAS  Google Scholar 

  82. Aldred, H. E., Hardman, A. E. & Taylor, S. Influence of 12 weeks of training by brisk walking on postprandial lipemia and insulinemia in sedentary middle-aged women. Metabolism 44, 390–397 (1995).

    CAS  Google Scholar 

  83. Herd, S. L., Hardman, A. E., Boobis, L. H. & Cairns, C. J. The effect of 13 weeks of running training followed by 9 d of detraining on postprandial lipaemia. Br. J. Nutr. 80, 57–66 (1998).

    CAS  Google Scholar 

  84. Perry, C. G. R. & Hawley, J. A. Molecular basis of exercise-induced skeletal muscle mitochondrial biogenesis: historical advances, current knowledge, and future challenges. Cold Spring Harb. Perspect. Med. 8, a029686 (2018).

    Google Scholar 

  85. Hood, D. A., Tryon, L. D., Carter, H. N., Kim, Y. & Chen, C. C. Unravelling the mechanisms regulating muscle mitochondrial biogenesis. Biochem. J. 473, 2295–2314 (2016).

    CAS  Google Scholar 

  86. Egan, B. & Zierath, J. R. Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab. 17, 162–184 (2013).

    CAS  Google Scholar 

  87. Hood, D. A., Memme, J. M., Oliveira, A. N. & Triolo, M. Maintenance of skeletal muscle mitochondria in health, exercise, and aging. Annu. Rev. Physiol. 81, 19–41 (2019).

    CAS  Google Scholar 

  88. Hawley, J. A., Hargreaves, M., Joyner, M. J. & Zierath, J. R. Integrative biology of exercise. Cell 159, 738–749 (2014).

    CAS  Google Scholar 

  89. Yost, T. J., Jensen, D. R., Haugen, B. R. & Eckel, R. H. Effect of dietary macronutrient composition on tissue-specific lipoprotein lipase activity and insulin action in normal-weight subjects. Am. J. Clin. Nutr. 68, 296–302 (1998).

    CAS  Google Scholar 

  90. Labbe, S. M. et al. Organ-specific dietary fatty acid uptake in humans using positron emission tomography coupled to computed tomography. Am. J. Physiol. Endocrinol. Metab. 300, E445–E453 (2011).

    CAS  Google Scholar 

  91. Romijn, J. A. et al. Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am. J. Physiol. 265, E380–E391 (1993).

    CAS  Google Scholar 

  92. Wolfe, R. R., Klein, S., Carraro, F. & Weber, J. M. Role of triglyceride-fatty acid cycle in controlling fat metabolism in humans during and after exercise. Am. J. Physiol. 258, E382–E389 (1990).

    CAS  Google Scholar 

  93. Bahr, R., Hostmark, A. T., Newsholme, E. A., Gronnerod, O. & Sejersted, O. M. Effect of exercise on recovery changes in plasma levels of FFA, glycerol, glucose and catecholamines. Acta Physiol. Scand. 143, 105–115 (1991).

    CAS  Google Scholar 

  94. Kimber, N. E., Heigenhauser, G. J., Spriet, L. L. & Dyck, D. J. Skeletal muscle fat and carbohydrate metabolism during recovery from glycogen-depleting exercise in humans. J. Physiol. 548, 919–927 (2003).

    CAS  Google Scholar 

  95. Kiens, B. & Richter, E. A. Utilization of skeletal muscle triacylglycerol during postexercise recovery in humans. Am. J. Physiol. 275, E332–E337 (1998). This paper shows the importance of oxidation of fatty acids in skeletal muscle during recovery from exercise in humans.

    CAS  Google Scholar 

  96. Hagenfeldt, L. & Wahren, J. Turnover of free fatty acids during recovery from exercise. J. Appl. Physiol. 39, 247–250 (1975).

    CAS  Google Scholar 

  97. Watt, M. J., Heigenhauser, G. J., O’Neill, M. & Spriet, L. L. Hormone-sensitive lipase activity and fatty acyl-CoA content in human skeletal muscle during prolonged exercise. J. Appl. Physiol. 95, 314–321 (2003).

    CAS  Google Scholar 

  98. Roepstorff, C. et al. Gender differences in substrate utilization during submaximal exercise in endurance-trained subjects. Am. J. Physiol. Endocrinol. Metab. 282, E435–E447 (2002).

    CAS  Google Scholar 

  99. Kiens, B. Skeletal muscle lipid metabolism in exercise and insulin resistance. Physiol. Rev. 86, 205–243 (2006).

    CAS  Google Scholar 

  100. van, H. G., Sacchetti, M., Radegran, G. & Saltin, B. Human skeletal muscle fatty acid and glycerol metabolism during rest, exercise and recovery. J. Physiol. 543, 1047–1058 (2002).

    Google Scholar 

  101. Pilegaard, H. et al. Substrate availability and transcriptional regulation of metabolic genes in human skeletal muscle during recovery from exercise. Metabolism 54, 1048–1055 (2005).

    CAS  Google Scholar 

  102. Ehrenborg, E. & Krook, A. Regulation of skeletal muscle physiology and metabolism by peroxisome proliferator-activated receptor delta. Pharmacol. Rev. 61, 373–393 (2009).

    CAS  Google Scholar 

  103. Tanaka, T. et al. Activation of peroxisome proliferator-activated receptor delta induces fatty acid beta-oxidation in skeletal muscle and attenuates metabolic syndrome. Proc. Natl Acad. Sci. USA 100, 15924–15929 (2003). A study showing that pharmacological activation of PPAR induces lipid metabolic adaptations in skeletal muscle of mice.

    CAS  Google Scholar 

  104. Fan, W. et al. PPARdelta promotes running endurance by preserving glucose. Cell Metab. 25, 1186–1193 (2017).

    CAS  Google Scholar 

  105. Constantin, D. et al. PPARdelta agonism induces a change in fuel metabolism and activation of an atrophy programme, but does not impair mitochondrial function in rat skeletal muscle. J. Physiol. 583, 381–390 (2007).

    CAS  Google Scholar 

  106. Constantin-Teodosiu, D., Baker, D. J., Constantin, D. & Greenhaff, P. L. PPARdelta agonism inhibits skeletal muscle PDC activity, mitochondrial ATP production and force generation during prolonged contraction. J. Physiol. 587, 231–239 (2009).

    CAS  Google Scholar 

  107. Garcia-Roves, P. et al. Raising plasma fatty acid concentration induces increased biogenesis of mitochondria in skeletal muscle. Proc. Natl Acad. Sci. USA 104, 10709–10713 (2007).

    CAS  Google Scholar 

  108. Banner, C. D. et al. A systematic analytical chemistry/cell assay approach to isolate activators of orphan nuclear receptors from biological extracts: characterization of peroxisome proliferator-activated receptor activators in plasma. J. Lipid Res. 34, 1583–1591 (1993).

    CAS  Google Scholar 

  109. Forman, B. M., Chen, J. & Evans, R. M. Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors alpha and delta. Proc. Natl Acad. Sci. USA 94, 4312–4317 (1997).

    CAS  Google Scholar 

  110. Krey, G. et al. Fatty acids, eicosanoids, and hypolipidemic agents identified as ligands of peroxisome proliferator-activated receptors by coactivator-dependent receptor ligand assay. Mol. Endocrinol. 11, 779–791 (1997).

    CAS  Google Scholar 

  111. Haemmerle, G. et al. ATGL-mediated fat catabolism regulates cardiac mitochondrial function via PPAR-alpha and PGC-1. Nat. Med. 17, 1076–1085 (2011).

    CAS  Google Scholar 

  112. Gerhart-Hines, Z. et al. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha. EMBO J. 26, 1913–1923 (2007).

    CAS  Google Scholar 

  113. Vila, L. et al. AAV-mediated Sirt1 overexpression in skeletal muscle activates oxidative capacity but does not prevent insulin resistance. Mol. Ther. Methods Clin. Dev. 5, 16072 (2016).

    Google Scholar 

  114. Feige, J. N. et al. Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation. Cell Metab. 8, 347–358 (2008).

    CAS  Google Scholar 

  115. Brandon, A. E. et al. Overexpression of SIRT1 in rat skeletal muscle does not alter glucose induced insulin resistance. PLoS ONE 10, e0121959 (2015).

    Google Scholar 

  116. Draznin, B., Wang, C., Adochio, R., Leitner, J. W. & Cornier, M. A. Effect of dietary macronutrient composition on AMPK and SIRT1 expression and activity in human skeletal muscle. Horm. Metab. Res. 44, 650–655 (2012).

    CAS  Google Scholar 

  117. Canto, C. et al. Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metab. 11, 213–219 (2010).

    CAS  Google Scholar 

  118. Fritzen, A. M. et al. 5 AMP activated protein kinase alpha controls substrate metabolism during post-exercise recovery via regulation of pyruvate dehydrogenase kinase 4. J. Physiol. 593, 4765–4780 (2015).

    CAS  Google Scholar 

  119. Gurd, B. J., Perry, C. G., Heigenhauser, G. J., Spriet, L. L. & Bonen, A. High-intensity interval training increases SIRT1 activity in human skeletal muscle. Appl. Physiol. Nutr. Metab. 35, 350–357 (2010).

    CAS  Google Scholar 

  120. Menzies, K. J., Singh, K., Saleem, A. & Hood, D. A. Sirtuin 1-mediated effects of exercise and resveratrol on mitochondrial biogenesis. J. Biol. Chem. 288, 6968–6979 (2013).

    CAS  Google Scholar 

  121. Philp, A. & Schenk, S. Unraveling the complexities of SIRT1-mediated mitochondrial regulation in skeletal muscle. Exerc. Sport. Sci. Rev. 41, 174–181 (2013).

    Google Scholar 

  122. Canto, C. et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458, 1056–1060 (2009).

    CAS  Google Scholar 

  123. Fritzen, A. M. et al. Fatty acid type-specific regulation of SIRT1 does not affect insulin sensitivity in human skeletal muscle. FASEB J. 33, 5510–5519 (2019). This paper shows that SIRT1 protein and activity in skeletal muscle is increased by a high-fat diet enriched in saturated fatty acids in humans, but is not affected by a high-fat diet enriched in unsaturated fatty acids.

    CAS  Google Scholar 

  124. Bakke, S. S. et al. Palmitic acid follows a different metabolic pathway than oleic acid in human skeletal muscle cells; lower lipolysis rate despite an increased level of adipose triglyceride lipase. Biochim. Biophys. Acta 1821, 1323–1333 (2012).

    CAS  Google Scholar 

  125. Garcia-Martinez, C. et al. Impact on fatty acid metabolism and differential localization of FATP1 and FAT/CD36 proteins delivered in cultured human muscle cells. Am. J. Physiol. Cell Physiol. 288, C1264–C1272 (2005).

    CAS  Google Scholar 

  126. Jones, P. J., Pencharz, P. B. & Clandinin, M. T. Whole body oxidation of dietary fatty acids: implications for energy utilization. Am. J. Clin. Nutr. 42, 769–777 (1985).

    CAS  Google Scholar 

  127. Schmidt, D. E., Allred, J. B. & Kien, C. L. Fractional oxidation of chylomicron-derived oleate is greater than that of palmitate in healthy adults fed frequent small meals. J. Lipid Res. 40, 2322–2332 (1999).

    CAS  Google Scholar 

  128. DeLany, J. P., Windhauser, M. M., Champagne, C. M. & Bray, G. A. Differential oxidation of individual dietary fatty acids in humans. Am. J. Clin. Nutr. 72, 905–911 (2000).

    CAS  Google Scholar 

  129. Hagenfeldt, L. & Wahren, J. Human forearm muscle metabolism during exercise. II. Uptake, release and oxidation of individual FFA and glycerol. Scand. J. Clin. Lab. Invest. 21, 263–276 (1968).

    CAS  Google Scholar 

  130. Fentz, J. et al. AMPKalpha is critical for enhancing skeletal muscle fatty acid utilization during in vivo exercise in mice. FASEB J. 29, 1725–1738 (2015).

    CAS  Google Scholar 

  131. Fentz, J. et al. AMPKalpha is essential for acute exercise-induced gene responses but not for exercise training-induced adaptations in mouse skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 309, E900–E914 (2015).

    CAS  Google Scholar 

  132. Lantier, L. et al. AMPK controls exercise endurance, mitochondrial oxidative capacity, and skeletal muscle integrity. FASEB J. 28, 3211–3224 (2014).

    CAS  Google Scholar 

  133. Wojtaszewski, J. F., Nielsen, P., Hansen, B. F., Richter, E. A. & Kiens, B. Isoform-specific and exercise intensity-dependent activation of 5’-AMP-activated protein kinase in human skeletal muscle. J. Physiol. 528, 221–226 (2000).

    CAS  Google Scholar 

  134. Samovski, D. et al. Regulation of AMPK activation by CD36 links fatty acid uptake to oxidation. Diabetes 64, 353–359 (2015). A studying demonstrating that AMPK is activated in skeletal muscle of mice by fatty acids via CD36 activation.

    CAS  Google Scholar 

  135. Watt, M. J., Steinberg, G. R., Chen, Z. P., Kemp, B. E. & Febbraio, M. A. Fatty acids stimulate AMP-activated protein kinase and enhance fatty acid oxidation in L6 myotubes. J. Physiol. 574, 139–147 (2006).

    CAS  Google Scholar 

  136. Hoeg, L. D. et al. Lipid-induced insulin resistance affects women less than men and is not accompanied by inflammation or impaired proximal insulin signaling. Diabetes 60, 64–73 (2011).

    Google Scholar 

  137. Pehmoller, C. et al. Exercise alleviates lipid-induced insulin resistance in human skeletal muscle-signaling interaction at the level of TBC1 domain family member 4. Diabetes 61, 2743–2752 (2012).

    Google Scholar 

  138. Yeo, W. K. et al. Fat adaptation followed by carbohydrate restoration increases AMPK activity in skeletal muscle from trained humans. J. Appl. Physiol. 105, 1519–1526 (2008).

    CAS  Google Scholar 

  139. Jeppesen, J. et al. LKB1 regulates lipid oxidation during exercise independently of AMPK. Diabetes 62, 1490–1499 (2013).

    CAS  Google Scholar 

  140. Lundsgaard, A. M., Fritzen, A. M. & Kiens, B. Molecular regulation of fatty acid oxidation in skeletal muscle during aerobic exercise. Trends Endocrinol. Metab. 29, 18–30 (2018).

    CAS  Google Scholar 

  141. Hingst, J. R. et al. Inducible deletion of skeletal muscle AMPKα reveals that AMPK is required for nucleotide balance but dispensable for muscle glucose uptake and fat oxidation during exercise. Mol. Metab. 40, 101028 (2020).

    CAS  Google Scholar 

  142. Hashimoto, T. & Brooks, G. A. Mitochondrial lactate oxidation complex and an adaptive role for lactate production. Med. Sci. Sports Exerc. 40, 486–494 (2008).

    CAS  Google Scholar 

  143. Nalbandian, M. & Takeda, M. Lactate as a signaling molecule that regulates exercise-induced adaptations. Biology 5, 38 (2016).

    Google Scholar 

  144. Brooks, G. A. Lactate as a fulcrum of metabolism. Redox. Biol. 35, 101454 (2020).

    CAS  Google Scholar 

  145. Westerterp, K. R., Smeets, A., Lejeune, M. P., Wouters-Adriaens, M. P. & Westerterp-Plantenga, M. S. Dietary fat oxidation as a function of body fat. Am. J. Clin. Nutr. 87, 132–135 (2008).

    CAS  Google Scholar 

  146. Kim, J. Y., Hickner, R. C., Cortright, R. L., Dohm, G. L. & Houmard, J. A. Lipid oxidation is reduced in obese human skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 279, E1039–E1044 (2000).

    CAS  Google Scholar 

  147. Bandyopadhyay, G. K., Yu, J. G., Ofrecio, J. & Olefsky, J. M. Increased malonyl-CoA levels in muscle from obese and type 2 diabetic subjects lead to decreased fatty acid oxidation and increased lipogenesis; thiazolidinedione treatment reverses these defects. Diabetes 55, 2277–2285 (2006).

    CAS  Google Scholar 

  148. Hulver, M. W. et al. Skeletal muscle lipid metabolism with obesity. Am. J. Physiol. Endocrinol. Metab. 284, E741–E747 (2003).

    CAS  Google Scholar 

  149. Steinberg, G. R., Parolin, M. L., Heigenhauser, G. J. & Dyck, D. J. Leptin increases FA oxidation in lean but not obese human skeletal muscle: evidence of peripheral leptin resistance. Am. J. Physiol. Endocrinol. Metab. 283, E187–E192 (2002).

    CAS  Google Scholar 

  150. Bonen, A. et al. Triacylglycerol accumulation in human obesity and type 2 diabetes is associated with increased rates of skeletal muscle fatty acid transport and increased sarcolemmal FAT/CD36. FASEB J. 18, 1144–1146 (2004).

    CAS  Google Scholar 

  151. Holloway, G. P. et al. Skeletal muscle mitochondrial FAT/CD36 content and palmitate oxidation are not decreased in obese women. Am. J. Physiol. Endocrinol. Metab. 292, E1782–E1789 (2007).

    CAS  Google Scholar 

  152. Anderson, E. J. et al. Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans. J. Clin. Invest. 119, 573–581 (2009).

    CAS  Google Scholar 

  153. Rynders, C. A., Blanc, S., DeJong, N., Bessesen, D. H. & Bergouignan, A. Sedentary behaviour is a key determinant of metabolic inflexibility. J. Physiol. 596, 1319–1330 (2018).

    CAS  Google Scholar 

  154. Dohlmann, T. L., Hinds, Ã. M., Dela, F., Helge, J. W. & Larsen, S. High-intensity interval training changes mitochondrial respiratory capacity differently in adipose tissue and skeletal muscle. Physiol. Rep. 6, e13857 (2018).

    Google Scholar 

  155. Devries, M. C. et al. Endurance training modulates intramyocellular lipid compartmentalization and morphology in skeletal muscle of lean and obese women. J. Clin. Endocrinol. Metab. 98, 4852–4862 (2013).

    CAS  Google Scholar 

  156. Bruce, C. R., Kriketos, A. D., Cooney, G. J. & Hawley, J. A. Disassociation of muscle triglyceride content and insulin sensitivity after exercise training in patients with type 2 diabetes. Diabetologia 47, 23–30 (2004).

    CAS  Google Scholar 

  157. Gillen, J. B. et al. Three minutes of all-out intermittent exercise per week increases skeletal muscle oxidative capacity and improves cardiometabolic health. PLoS ONE 9, e111489 (2014).

    Google Scholar 

  158. de Matos, M. A. et al. High-intensity interval training improves markers of oxidative metabolism in skeletal muscle of individuals with obesity and insulin resistance. Front. Physiol. 9, 1451 (2018).

    Google Scholar 

  159. Louche, K. et al. Endurance exercise training up-regulates lipolytic proteins and reduces triglyceride content in skeletal muscle of obese subjects. J. Clin. Endocrinol. Metab. 98, 4863–4871 (2013).

    CAS  Google Scholar 

  160. Blaak, E. E., Wolffenbuttel, B. H., Saris, W. H., Pelsers, M. M. & Wagenmakers, A. J. Weight reduction and the impaired plasma-derived free fatty acid oxidation in type 2 diabetic subjects. J. Clin. Endocrinol. Metab. 86, 1638–1644 (2001).

    CAS  Google Scholar 

  161. Albers, P. H. et al. Enhanced insulin signaling in human skeletal muscle and adipose tissue following gastric bypass surgery. Am. J. Physiol. Regul. Integr. Comp. Physiol. 309, R510–R524 (2015).

    CAS  Google Scholar 

  162. Watt, M. J. & Hevener, A. L. Fluxing the mitochondria to insulin resistance. Cell Metab. 7, 5–6 (2008).

    CAS  Google Scholar 

  163. Dobbins, R. L. et al. Prolonged inhibition of muscle carnitine palmitoyltransferase-1 promotes intramyocellular lipid accumulation and insulin resistance in rats. Diabetes 50, 123–130 (2001).

    CAS  Google Scholar 

  164. Timmers, S. et al. Augmenting muscle diacylglycerol and triacylglycerol content by blocking fatty acid oxidation does not impede insulin sensitivity. Proc. Natl Acad. Sci. USA 109, 11711–11716 (2012).

    CAS  Google Scholar 

  165. Hubinger, A., Knode, O., Susanto, F., Reinauer, H. & Gries, F. A. Effects of the carnitine-acyltransferase inhibitor etomoxir on insulin sensitivity, energy expenditure and substrate oxidation in NIDDM. Horm. Metab. Res. 29, 436–439 (1997).

    Google Scholar 

  166. Keung, W. et al. Inhibition of carnitine palmitoyltransferase-1 activity alleviates insulin resistance in diet-induced obese mice. Diabetes 62, 711–720 (2013).

    CAS  Google Scholar 

  167. Randle, P. J., Garland, P. B., Hales, C. N. & Newsholme, E. A. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1, 785–789 (1963).

    CAS  Google Scholar 

  168. Lundsgaard, A. M. et al. Glucometabolic consequences of acute and prolonged inhibition of fatty acid oxidation. J. Lipid Res. 61, 10–19 (2020).

    CAS  Google Scholar 

  169. Galgani, J. E., Moro, C. & Ravussin, E. Metabolic flexibility and insulin resistance. Am. J. Physiol. Endocrinol. Metab. 295, E1009–E1017 (2008).

    CAS  Google Scholar 

  170. Branis, N. M., Etesami, M., Walker, R. W., Berk, E. S. & Albu, J. B. Effect of a 1-week, eucaloric, moderately high-fat diet on peripheral insulin sensitivity in healthy premenopausal women. BMJ Open. Diabetes Res. Care 3, e000100 (2015).

    Google Scholar 

  171. von Frankenberg, A. D. et al. A high-fat, high-saturated fat diet decreases insulin sensitivity without changing intra-abdominal fat in weight-stable overweight and obese adults. Eur. J. Nutr. 56, 431–443 (2015).

    Google Scholar 

  172. van Herpen, N. A., Schrauwen-Hinderling, V. B., Schaart, G., Mensink, R. P. & Schrauwen, P. Three weeks on a high-fat diet increases intrahepatic lipid accumulation and decreases metabolic flexibility in healthy overweight men. J. Clin. Endocrinol. Metab. 96, E691–E695 (2011).

    Google Scholar 

  173. Stettler, R. et al. Interaction between dietary lipids and physical inactivity on insulin sensitivity and on intramyocellular lipids in healthy men. Diabetes Care 28, 1404–1409 (2005).

    CAS  Google Scholar 

  174. Borkman, M., Campbell, L. V., Chisholm, D. J. & Storlien, L. H. Comparison of the effects on insulin sensitivity of high carbohydrate and high fat diets in normal subjects. J. Clin. Endocrinol. Metab. 72, 432–437 (1991).

    CAS  Google Scholar 

  175. Vogt, M. et al. Effects of dietary fat on muscle substrates, metabolism, and performance in athletes. Med. Sci. Sports Exerc. 35, 952–960 (2003).

    CAS  Google Scholar 

  176. Hoppeler, H., Billeter, R., Horvath, P. J., Leddy, J. J. & Pendergast, D. R. Muscle structure with low- and high-fat diets in well-trained male runners. Int. J. Sports Med. 20, 522–526 (1999).

    CAS  Google Scholar 

  177. Nielsen, J. et al. Plasticity in mitochondrial cristae density allows metabolic capacity modulation in human skeletal muscle. J. Physiol. 595, 2839–2847 (2017).

    CAS  Google Scholar 

  178. Hoppeler, H., Luthi, P., Claassen, H., Weibel, E. R. & Howald, H. The ultrastructure of the normal human skeletal muscle. A morphometric analysis on untrained men, women and well-trained orienteers. Pflugers Arch. 344, 217–232 (1973).

    CAS  Google Scholar 

  179. Moors, C. C., van der Zijl, N. J., Diamant, M., Blaak, E. E. & Goossens, G. H. Impaired insulin sensitivity is accompanied by disturbances in skeletal muscle fatty acid handling in subjects with impaired glucose metabolism. Int. J. Obes. 36, 709–717 (2012).

    CAS  Google Scholar 

  180. Constantin-Teodosiu, D., Cederblad, G. & Hultman, E. PDC activity and acetyl group accumulation in skeletal muscle during prolonged exercise. J. Appl. Physiol. 73, 2403–2407 (1992).

    CAS  Google Scholar 

  181. Hoshino, D., Tamura, Y., Masuda, H., Matsunaga, Y. & Hatta, H. Effects of decreased lactate accumulation after dichloroacetate administration on exercise training-induced mitochondrial adaptations in mouse skeletal muscle. Physiol. Rep. 3, 3–9 (2015). This work shows that pharmacological inhibition of lactate production during exercise in mice impairs exercise training-induced metabolic adaptations.

    Google Scholar 

  182. Kitaoka, Y., Takeda, K., Tamura, Y. & Hatta, H. Lactate administration increases mRNA expression of PGC-1alpha and UCP3 in mouse skeletal muscle. Appl. Physiol. Nutr. Metab. 41, 695–698 (2016).

    CAS  Google Scholar 

  183. Takahashi, K., Kitaoka, Y., Matsunaga, Y. & Hatta, H. Effects of lactate administration on mitochondrial enzyme activity and monocarboxylate transporters in mouse skeletal muscle. Physiol. Rep. 7, e14224 (2019).

    CAS  Google Scholar 

  184. Cerda-Kohler, H. et al. Lactate administration activates the ERK1/2, mTORC1, and AMPK pathways differentially according to skeletal muscle type in mouse. Physiol. Rep. 6, e13800 (2018).

    Google Scholar 

  185. Takahashi, H. et al. TGF-beta2 is an exercise-induced adipokine that regulates glucose and fatty acid metabolism. Nat. Metab. 1, 291–303 (2019).

    CAS  Google Scholar 

  186. Zhang, D. et al. Metabolic regulation of gene expression by histone lactylation. Nature 574, 575–580 (2019).

    CAS  Google Scholar 

Download references

Acknowledgements

B.K. acknowledges the support of the Danish Medical Research Council, the Lundbeck Research Foundation and the Novo Nordisk Research Foundation. The postdoctoral fellowships of A.M.F. and A.-M.L. were supported by a research grant from the Danish Diabetes Academy (grant number NNF17SA0031406), which was funded by the Novo Nordisk Foundation. A.M.F. acknowledges the further support of the Alfred Benzon Foundation. The authors apologize to all the authors whose contributions to the field could not be cited due to space and reference limitations.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Bente Kiens.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Endocrinology thanks A. Chabowski and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fritzen, A.M., Lundsgaard, AM. & Kiens, B. Tuning fatty acid oxidation in skeletal muscle with dietary fat and exercise. Nat Rev Endocrinol 16, 683–696 (2020). https://doi.org/10.1038/s41574-020-0405-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-020-0405-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing