Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Drug repurposing: sulfasalazine sensitizes gliomas to gamma knife radiosurgery by blocking cystine uptake through system Xc, leading to glutathione depletion

Subjects

Abstract

Glioblastomas (GBMs) are aggressive brain tumors that always recur after radiotherapy. Cystine, mainly provided by the system Xc antiporter, is a requirement for glioma cell synthesis of glutathione (GSH) which has a critical role in scavenging free radicals, for example, after radiotherapy. Thus, we hypothesized that the Xc-inhibitor sulfasalazine (SAS) could potentiate the efficacy of radiotherapy against gliomas. Here, we show that the catalytic subunit of system Xc, xCT, was uniformly expressed in a panel of 30 human GBM biopsies. SAS treatment significantly reduced cystine uptake and GSH levels, whereas it significantly increased the levels of reactive oxygen species (ROS) in glioma cells in vitro. Furthermore, SAS and radiation synergistically increased DNA double-strand breaks and increased glioma cell death, whereas adding the antioxidant N-acetyl-L-cysteine (NAC) reversed cell death. Moreover, SAS and gamma knife radiosurgery (GKRS) synergistically prolonged survival in nude rats harboring human GBM xenografts, compared with controls or either treatment alone. In conclusion, SAS effectively blocks cystine uptake in glioma cells in vitro, leading to GSH depletion and increased ROS levels, DNA damage and cell death. Moreover, it potentiates the anti-tumor efficacy of GKRS in rats with human GBM xenografts, providing a survival benefit. Thus, SAS may have a role as a radiosensitizer to enhance the efficacy of current radiotherapies for glioma patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005; 352: 987–996.

    Article  CAS  Google Scholar 

  2. Cairns RA, Harris IS, Mak TW . Regulation of cancer cell metabolism. Nat Rev Cancer 2011; 11: 85–95.

    Article  CAS  Google Scholar 

  3. Fruehauf JP, Meyskens FL Jr . Reactive oxygen species: a breath of life or death? Clin Cancer Res 2007; 13: 789–794.

    Article  CAS  Google Scholar 

  4. Hayes JD, McMahon M . NRF2 and KEAP1 mutations: permanent activation of an adaptive response in cancer. Trends Biochem Sci 2009; 34: 176–188.

    Article  CAS  Google Scholar 

  5. Lluis JM, Buricchi F, Chiarugi P, Morales A, Fernandez-Checa JC . Dual role of mitochondrial reactive oxygen species in hypoxia signaling: activation of nuclear factor-{kappa}B via c-SRC and oxidant-dependent cell death. Cancer Res 2007; 67: 7368–7377.

    Article  CAS  Google Scholar 

  6. McDonald JT, Kim K, Norris AJ, Vlashi E, Phillips TM, Lagadec C et al. Ionizing radiation activates the Nrf2 antioxidant response. Cancer Res 2010; 70: 8886–8895.

    Article  CAS  Google Scholar 

  7. Towner RA, Smith N, Saunders D, De Souza PC, Henry L, Lupu F et al. Combined molecular MRI and immuno-spin-trapping for in vivo detection of free radicals in orthotopic mouse GL261 gliomas. Biochim Biophys Acta 2013; 1832: 2153–2161.

    Article  CAS  Google Scholar 

  8. Allalunis-Turner MJ, Day RS 3rd, McKean JD, Petruk KC, Allen PB, Aronyk KE et al. Glutathione levels and chemosensitizing effects of buthionine sulfoximine in human malignant glioma cells. J Neurooncol 1991; 11: 157–164.

    Article  CAS  Google Scholar 

  9. Bannai S, Kitamura E . Transport interaction of L-cystine and L-glutamate in human diploid fibroblasts in culture. J Biol Chem 1980; 255: 2372–2376.

    CAS  PubMed  Google Scholar 

  10. Sato H, Tamba M, Ishii T, Bannai S . Cloning and expression of a plasma membrane cystine/glutamate exchange transporter composed of two distinct proteins. J Biol Chem 1999; 274: 11455–11458.

    Article  CAS  Google Scholar 

  11. Ye ZC, Rothstein JD, Sontheimer H . Compromised glutamate transport in human glioma cells: reduction-mislocalization of sodium-dependent glutamate transporters and enhanced activity of cystine-glutamate exchange. J Neurosci 1999; 19: 10767–10777.

    Article  CAS  Google Scholar 

  12. Robert SM, Sontheimer H . Glutamate transporters in the biology of malignant gliomas. Cell Mol Life Sci 2014; 71: 1839–1854.

    Article  CAS  Google Scholar 

  13. Lyons SA, Chung WJ, Weaver AK, Ogunrinu T, Sontheimer H . Autocrine glutamate signaling promotes glioma cell invasion. Cancer Res 2007; 67: 9463–9471.

    Article  CAS  Google Scholar 

  14. Rothstein JD, Brem H . Excitotoxic destruction facilitates brain tumor growth. Nat Med 2001; 7: 994–995.

    Article  CAS  Google Scholar 

  15. Buckingham SC, Campbell SL, Haas BR, Montana V, Robel S, Ogunrinu T et al. Glutamate release by primary brain tumors induces epileptic activity. Nat Med 2011; 17: 1269–1274.

    Article  CAS  Google Scholar 

  16. Kim JY, Kanai Y, Chairoungdua A, Cha SH, Matsuo H, Kim DK et al. Human cystine/glutamate transporter: cDNA cloning and upregulation by oxidative stress in glioma cells. Biochim Biophys Acta 2001; 1512: 335–344.

    Article  CAS  Google Scholar 

  17. Takeuchi S, Wada K, Toyooka T, Shinomiya N, Shimazaki H, Nakanishi K et al. Increased xCT expression correlates with tumor invasion and outcome in patients with glioblastomas. Neurosurgery 2013; 72: 33–41 discussion 41.

    Article  Google Scholar 

  18. Neumann VC, Grindulis KA . Sulphasalazine in rheumatoid arthritis: an old drug revived. J R Soc Med 1984; 77: 169–172.

    Article  CAS  Google Scholar 

  19. Dick AP, Grayson MJ, Carpenter RG, Petrie A et al. Controlled trial of sulphasalazine in the treatment of ulcerative colitis. Gut 1964; 5: 437–442.

    Article  CAS  Google Scholar 

  20. Gout PW, Buckley AR, Simms CR, Bruchovsky N . Sulfasalazine, a potent suppressor of lymphoma growth by inhibition of the x(c)- cystine transporter: a new action for an old drug. Leukemia 2001; 15: 1633–1640.

    Article  CAS  Google Scholar 

  21. Chung WJ, Lyons SA, Nelson GM, Hamza H, Gladson CL, Gillespie GY et al. Inhibition of cystine uptake disrupts the growth of primary brain tumors. J Neurosci 2005; 25: 7101–7110.

    Article  CAS  Google Scholar 

  22. Ogunrinu TA, Sontheimer H . Hypoxia increases the dependence of glioma cells on glutathione. J Biol Chem 2010; 285: 37716–37724.

    Article  CAS  Google Scholar 

  23. Salcman M . Survival in glioblastoma: historical perspective. Neurosurgery 1980; 7: 435–439.

    Article  CAS  Google Scholar 

  24. Archibald YM, Lunn D, Ruttan LA, Macdonald DR, Del Maestro RF, Barr HW et al. Cognitive functioning in long-term survivors of high-grade glioma. J Neurosurg 1994; 80: 247–253.

    Article  CAS  Google Scholar 

  25. Soffietti R, Kocher M, Abacioglu UM, Villa S, Fauchon F, Baumert BG et al. A European organisation for research and treatment of cancer phase III trial of adjuvant whole-brain radiotherapy versus observation in patients with one to three brain metastases from solid tumors after surgical resection or radiosurgery: quality-of-life results. J Clin Oncol 2013; 31: 65–72.

    Article  Google Scholar 

  26. Skeie BS, Enger PØ, Brøgger J, Ganz JC, Thorsen F, Heggdal JI et al. gamma knife surgery versus reoperation for recurrent glioblastoma multiforme. World Neurosurg 2012; 78: 658–669.

    Article  Google Scholar 

  27. Hsieh PC, Chandler JP, Bhangoo S, Panagiotopoulos K, Kalapurakal JA, Marymont MH et al. Adjuvant gamma knife stereotactic radiosurgery at the time of tumor progression potentially improves survival for patients with glioblastoma multiforme. Neurosurgery 2005; 57: 684–692 discussion 684-92.

    Article  Google Scholar 

  28. Skeie BS, Wang J, Dodoo E, Heggdal JI, Grønli J, Sleire L et al. Gamma knife surgery as monotherapy with clinically relevant doses prolongs survival in a human GBM xenograft model. Biomed Res Int 2013; 2013: 139674.

    PubMed  Google Scholar 

  29. Kato S, Negishi K, Mawatari K, Kuo CH . A mechanism for glutamate toxicity in the C6 glioma cells involving inhibition of cystine uptake leading to glutathione depletion. Neuroscience 1992; 48: 903–914.

    Article  CAS  Google Scholar 

  30. Bump EA, Yu NY, Brown JM . Radiosensitization of hypoxic tumor cells by depletion of intracellular glutathione. Science 1982; 217: 544–545.

    Article  CAS  Google Scholar 

  31. Narang VS, Pauletti GM, Gout PW, Buckley DJ, Buckley AR . Sulfasalazine-induced reduction of glutathione levels in breast cancer cells: enhancement of growth-inhibitory activity of Doxorubicin. Chemotherapy 2007; 53: 210–217.

    Article  CAS  Google Scholar 

  32. Robe PA, Martin DH, Nguyen-Khac MT, Artesi M, Deprez M, Albert A et al. Early termination of ISRCTN45828668, a phase 1/2 prospective, randomized study of sulfasalazine for the treatment of progressing malignant gliomas in adults. BMC Cancer 2009; 9: 372.

    Article  Google Scholar 

  33. Takeuchi S, Wada K, Nagatani K, Otani N, Osada H, Nawashiro H et al. Sulfasalazine and temozolomide with radiation therapy for newly diagnosed glioblastoma. Neurol India 2014; 62: 42–47.

    Article  Google Scholar 

  34. Robe PA, Bentires-Alj M, Bonif M, Rogister B, Deprez M, Haddada H et al. In vitro and in vivo activity of the nuclear factor-kappaB inhibitor sulfasalazine in human glioblastomas. Clin Cancer Res 2004; 10: 5595–5603.

    Article  CAS  Google Scholar 

  35. Akslen LA, Andersen KJ, Bjerkvig R . Characteristics of human and rat glioma cells grown in a defined medium. Anticancer Res 1988; 8: 797–803.

    CAS  PubMed  Google Scholar 

  36. Bjerkvig R, Tønnesen A, Laerum OD, Backlund EO . Multicellular tumor spheroids from human gliomas maintained in organ culture. J Neurosurg 1990; 72: 463–475.

    Article  CAS  Google Scholar 

  37. Sakariassen PO, Prestegarden L, Wang J, Skaftnesmo KO, Mahesparan R, Molthoff C et al. Angiogenesis-independent tumor growth mediated by stem-like cancer cells. Proc Natl Acad Sci USA 2006; 103: 16466–16471.

    Article  CAS  Google Scholar 

  38. Wegener J, Keese CR, Giaever I . Electric cell-substrate impedance sensing (ECIS) as a noninvasive means to monitor the kinetics of cell spreading to artificial surfaces. Exp Cell Res 2000; 259: 158–166.

    Article  CAS  Google Scholar 

  39. Wang J, Miletic H, Sakariassen PØ, Huszthy PC, Jacobsen H, Brekkå N et al. A reproducible brain tumour model established from human glioblastoma biopsies. BMC Cancer 2009; 9: 465.

    Article  CAS  Google Scholar 

  40. Rey M, Valliccioni PA, Vial M, Porcheron D, Regis J, Kerlerian-le Goff L et al. Experimental radiosurgery in rats using gamma a ‘gamma knife’. Description of a stereotactic device for small laboratory animals. Neurochirurgie 1996; 42: 289–293.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Ø Enger.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sleire, L., Skeie, B., Netland, I. et al. Drug repurposing: sulfasalazine sensitizes gliomas to gamma knife radiosurgery by blocking cystine uptake through system Xc, leading to glutathione depletion. Oncogene 34, 5951–5959 (2015). https://doi.org/10.1038/onc.2015.60

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.60

This article is cited by

Search

Quick links