Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Mice deficient in Muc4 are resistant to experimental colitis and colitis-associated colorectal cancer

Abstract

MUC4, a large transmembrane mucin normally expressed in the small and large intestine, is differentially expressed during inflammatory and malignant conditions of the colon. However, the expression pattern and the role of MUC4 in colitis and colorectal cancer (CRC) are inconclusive. Therefore, the aim of this study was to understand the role of Muc4 during inflammatory and malignant conditions of the colon. Here, we generated Muc4−/− mice and addressed its role in colitis and colitis-associated CRC using dextran sodium sulfate (DSS) and azoxymethane (AOM)-DSS experimental models, respectively. Muc4−/− mice were viable, fertile with no apparent defects. Muc4−/− mice displayed increased resistance to DSS-induced colitis compared with wild-type (WT) littermates that was evaluated by survival rate, body weight loss, diarrhea and fecal blood score, and histological score. Reduced infiltration of inflammatory cells, that is, CD3+ lymphocytes and F4/80+ macrophages was observed in the inflamed mucosa along with reduction in the mRNA levels of inflammatory cytokines interleukin (IL)-1β and tumor necrosis factor (TNF)-α and anti-microbial genes Lysozyme M and SLPI in the colon of Muc4−/− mice compared with WT littermates. Compensatory upregulation of Muc2 and Muc3 mucins under basal and DSS treatment conditions partly explains the resistance observed in Muc4−/− mice. Accordingly, Muc4−/− mice exhibited significantly reduced tumor burden compared with WT mice assessed in a colitis-induced tumor model using AOM/DSS. An increased percentage of Ki67+ nuclei was observed in the tumors from WT compared with Muc4−/− mice suggesting Muc4 to be critical in intestinal cell proliferation during tumorigenesis. Taken together, we conclusively demonstrate for the first time the role of Muc4 in driving intestinal inflammation and inflammation-associated tumorigenesis using a novel Muc4−/− mouse model.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

AOM:

azoxymethane

CD:

Crohn’s disease

CRC:

colorectal cancer

DSS:

dextran sodium sulfate

IBD:

inflammatory bowel disease

IL:

interleukin

TNF:

tumor necrosis factor

UC:

ulcerative colitis

WT:

wild type

References

  1. Siegel R, Ma J, Zou Z, Jemal A . Cancer statistics, 2014. CA Cancer J Clin 2014; 64: 9–29.

    PubMed  Google Scholar 

  2. Sheng YH, Hasnain SZ, Florin TH, McGuckin MA . Mucins in inflammatory bowel diseases and colorectal cancer. J Gastroenterol Hepatol 2012; 27: 28–38.

    Article  CAS  PubMed  Google Scholar 

  3. McGuckin MA, Linden SK, Sutton P, Florin TH . Mucin dynamics and enteric pathogens. Nat Rev Microbiol 2011; 9: 265–278.

    Article  CAS  PubMed  Google Scholar 

  4. Van Klinken BJ, Tytgat KM, Buller HA, Einerhand AW, Dekker J . Biosynthesis of intestinal mucins: MUC1, MUC2, MUC3 and more. Biochem Soc Trans 1995; 23: 814–818.

    Article  CAS  PubMed  Google Scholar 

  5. Zhang J, Yasin M, Carraway CA, Carraway KL . MUC4 expression and localization in gastrointestinal tract and skin of human embryos. Tissue Cell 2006; 38: 271–275.

    Article  CAS  PubMed  Google Scholar 

  6. Boltin D, Perets TT, Vilkin A, Niv Y . Mucin function in inflammatory bowel disease: an update. J Clin Gastroenterol 2013; 47: 106–111.

    Article  CAS  PubMed  Google Scholar 

  7. Longman RJ, Poulsom R, Corfield AP, Warren BF, Wright NA, Thomas MG . Alterations in the composition of the supramucosal defense barrier in relation to disease severity of ulcerative colitis. J Histochem Cytochem 2006; 54: 1335–1348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Myerscough N, Warren B, Gough M, Corfield A . Expression of mucin genes in ulcerative colitis. Biochem Soc Trans 1995; 23: 536S.

    Article  CAS  PubMed  Google Scholar 

  9. Buisine MP, Desreumaux P, Debailleul V, Gambiez L, Geboes K, Ectors N et al. Abnormalities in mucin gene expression in Crohn's disease. Inflamm Bowel Dis 1999; 5: 24–32.

    Article  CAS  PubMed  Google Scholar 

  10. Spicer AP, Rowse GJ, Lidner TK, Gendler SJ . Delayed mammary tumor progression in Muc-1 null mice. J Biol Chem 1995; 270: 30093–30101.

    Article  CAS  PubMed  Google Scholar 

  11. Velcich A, Yang W, Heyer J, Fragale A, Nicholas C, Viani S et al. Colorectal cancer in mice genetically deficient in the mucin Muc2. Science 2002; 295: 1726–1729.

    Article  CAS  PubMed  Google Scholar 

  12. Sheng YH, Lourie R, Linden SK, Jeffery PL, Roche D, Tran TV et al. The MUC13 cell-surface mucin protects against intestinal inflammation by inhibiting epithelial cell apoptosis. Gut 2011; 60: 1661–1670.

    Article  CAS  PubMed  Google Scholar 

  13. McAuley JL, Linden SK, Png CW, King RM, Pennington HL, Gendler SJ et al. MUC1 cell surface mucin is a critical element of the mucosal barrier to infection. J Clin Invest 2007; 117: 2313–2324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Petersson J, Schreiber O, Hansson GC, Gendler SJ, Velcich A, Lundberg JO et al. Importance and regulation of the colonic mucus barrier in a mouse model of colitis. Am J Physiol Gastrointest Liver Physiol 2011; 300: G327–G333.

    Article  CAS  PubMed  Google Scholar 

  15. Van der Sluis M, De Koning BA, De Bruijn AC, Velcich A, Meijerink JP, Van Goudoever JB et al. Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology 2006; 131: 117–129.

    Article  CAS  PubMed  Google Scholar 

  16. Chaturvedi P, Singh AP, Batra SK . Structure, evolution, and biology of the MUC4 mucin. FASEB J 2008; 22: 966–981.

    Article  CAS  PubMed  Google Scholar 

  17. Singh AP, Chaturvedi P, Batra SK . Emerging roles of MUC4 in cancer: a novel target for diagnosis and therapy. Cancer Res 2007; 67: 433–436.

    Article  CAS  PubMed  Google Scholar 

  18. Chauhan SC, Singh AP, Ruiz F, Johansson SL, Jain M, Smith LM et al. Aberrant expression of MUC4 in ovarian carcinoma: diagnostic significance alone and in combination with MUC1 and MUC16 (CA125). Mod Pathol 2006; 19: 1386–1394.

    Article  CAS  PubMed  Google Scholar 

  19. Mukhopadhyay P, Chakraborty S, Ponnusamy MP, Lakshmanan I, Jain M, Batra SK . Mucins in the pathogenesis of breast cancer: implications in diagnosis, prognosis and therapy. Biochim Biophys Acta 2011; 1815: 224–240.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Majhi PD, Lakshmanan I, Ponnusamy MP, Jain M, Das S, Kaur S et al. Pathobiological implications of MUC4 in non-small-cell lung cancer. J Thorac Oncol 2013; 8: 398–407.

    Article  CAS  PubMed  Google Scholar 

  21. Miyahara N, Shoda J, Ishige K, Kawamoto T, Ueda T, Taki R et al. MUC4 interacts with ErbB2 in human gallbladder carcinoma: potential pathobiological implications. Eur J Cancer 2008; 44: 1048–1056.

    Article  CAS  PubMed  Google Scholar 

  22. Tamada S, Shibahara H, Higashi M, Goto M, Batra SK, Imai K et al. MUC4 is a novel prognostic factor of extrahepatic bile duct carcinoma. Clin Cancer Res 2006; 12: 4257–4264.

    Article  CAS  PubMed  Google Scholar 

  23. Saitou M, Goto M, Horinouchi M, Tamada S, Nagata K, Hamada T et al. MUC4 expression is a novel prognostic factor in patients with invasive ductal carcinoma of the pancreas. J Clin Pathol 2005; 58: 845–852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shibahara H, Tamada S, Higashi M, Goto M, Batra SK, Hollingsworth MA et al. MUC4 is a novel prognostic factor of intrahepatic cholangiocarcinoma-mass forming type. Hepatology 2004; 39: 220–229.

    Article  CAS  PubMed  Google Scholar 

  25. Hoebler C, Gaudier E, De Coppet P, Rival M, Cherbut C . MUC genes are differently expressed during onset and maintenance of inflammation in dextran sodium sulfate-treated mice. Dig Dis Sci 2006; 51: 381–389.

    Article  CAS  PubMed  Google Scholar 

  26. Biemer-Huttmann AE, Walsh MD, McGuckin MA, Ajioka Y, Watanabe H, Leggett BA et al. Immunohistochemical staining patterns of MUC1, MUC2, MUC4, and MUC5AC mucins in hyperplastic polyps, serrated adenomas, and traditional adenomas of the colorectum. J Histochem Cytochem 1999; 47: 1039–1048.

    Article  CAS  PubMed  Google Scholar 

  27. Biemer-Huttmann AE, Walsh MD, McGuckin MA, Simms LA, Young J, Leggett BA et al. Mucin core protein expression in colorectal cancers with high levels of microsatellite instability indicates a novel pathway of morphogenesis. Clin Cancer Res 2000; 6: 1909–1916.

    CAS  PubMed  Google Scholar 

  28. Ogata S, Uehara H, Chen A, Itzkowitz SH . Mucin gene expression in colonic tissues and cell lines. Cancer Res 1992; 52: 5971–5978.

    CAS  PubMed  Google Scholar 

  29. Shanmugam C, Jhala NC, Katkoori VR, Wan W, Meleth S, Grizzle WE et al. Prognostic value of mucin 4 expression in colorectal adenocarcinomas. Cancer 2010; 116: 3577–3586.

    Article  CAS  PubMed  Google Scholar 

  30. Perse M, Cerar A . Dextran sodium sulphate colitis mouse model: traps and tricks. J Biomed Biotechnol 2012; 2012: 718617.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Feagins LA, Souza RF, Spechler SJ . Carcinogenesis in IBD: potential targets for the prevention of colorectal cancer. Nat Rev Gastroenterol Hepatol 2009; 6: 297–305.

    Article  CAS  PubMed  Google Scholar 

  32. Bienz M, Clevers H . Linking colorectal cancer to Wnt signaling. Cell 2000; 103: 311–320.

    Article  CAS  PubMed  Google Scholar 

  33. MacDonald BT, Tamai K, He X . Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 2009; 17: 9–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Luu Y, Junker W, Rachagani S, Das S, Batra SK, Heinrikson RL et al. Human intestinal MUC17 mucin augments intestinal cell restitution and enhances healing of experimental colitis. Int J Biochem Cell Biol 2010; 42: 996–1006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Resta-Lenert S, Das S, Batra SK, Ho SB . Muc17 protects intestinal epithelial cells from enteroinvasive E. coli infection by promoting epithelial barrier integrity. Am J Physiol Gastrointest Liver Physiol 2011; 300: G1144–G1155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ho SB, Luu Y, Shekels LL, Batra SK, Kandarian B, Evans DB et al. Activity of recombinant cysteine-rich domain proteins derived from the membrane-bound MUC17/Muc3 family mucins. Biochim Biophys Acta 2010; 1800: 629–638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dharmani P, Leung P, Chadee K . Tumor necrosis factor-alpha and Muc2 mucin play major roles in disease onset and progression in dextran sodium sulphate-induced colitis. PLoS One 2011; 6: e25058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Enss ML, Cornberg M, Wagner S, Gebert A, Henrichs M, Eisenblatter R et al. Proinflammatory cytokines trigger MUC gene expression and mucin release in the intestinal cancer cell line LS180. Inflamm Res 2000; 49: 162–169.

    Article  CAS  PubMed  Google Scholar 

  39. Iwashita J, Sato Y, Sugaya H, Takahashi N, Sasaki H, Abe T . mRNA of MUC2 is stimulated by IL-4, IL-13 or TNF-alpha through a mitogen-activated protein kinase pathway in human colon cancer cells. Immunol Cell Biol 2003; 81: 275–282.

    Article  CAS  PubMed  Google Scholar 

  40. Kim YD, Jeon JY, Woo HJ, Lee JC, Chung JH, Song SY et al. Interleukin-1beta induces MUC2 gene expression and mucin secretion via activation of PKC-MEK/ERK, and PI3K in human airway epithelial cells. J Korean Med Sci 2002; 17: 765–771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shekels LL, Ho SB . Characterization of the mouse Muc3 membrane bound intestinal mucin 5' coding and promoter regions: regulation by inflammatory cytokines. Biochim Biophys Acta 2003; 1627: 90–100.

    Article  CAS  PubMed  Google Scholar 

  42. Bouma G, Strober W . The immunological and genetic basis of inflammatory bowel disease. Nat Rev Immunol 2003; 3: 521–533.

    Article  CAS  PubMed  Google Scholar 

  43. Singh AP, Moniaux N, Chauhan SC, Meza JL, Batra SK . Inhibition of MUC4 expression suppresses pancreatic tumor cell growth and metastasis. Cancer Res 2004; 64: 622–630.

    Article  CAS  PubMed  Google Scholar 

  44. Singh AP, Senapati S, Ponnusamy MP, Jain M, Lele SM, Davis JS et al. Clinical potential of mucins in diagnosis, prognosis, and therapy of ovarian cancer. Lancet Oncol 2008; 9: 1076–1085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Singh PK, Hollingsworth MA . Cell surface-associated mucins in signal transduction. Trends Cell Biol 2006; 16: 467–476.

    Article  CAS  PubMed  Google Scholar 

  46. Senapati S, Das S, Batra SK . Mucin-interacting proteins: from function to therapeutics. Trends Biochem Sci 2010; 35: 236–245.

    Article  CAS  PubMed  Google Scholar 

  47. Senapati S, Chaturvedi P, Sharma P, Venkatraman G, Meza JL, El-Rifai W et al. Deregulation of MUC4 in gastric adenocarcinoma: potential pathobiological implication in poorly differentiated non-signet ring cell type gastric cancer. Br J Cancer 2008; 99: 949–956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ponnusamy MP, Lakshmanan I, Jain M, Das S, Chakraborty S, Dey P et al. MUC4 mucin-induced epithelial to mesenchymal transition: a novel mechanism for metastasis of human ovarian cancer cells. Oncogene 2010; 29: 5741–5754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ponnusamy MP, Seshacharyulu P, Vaz A, Dey P, Batra SK . MUC4 stabilizes HER2 expression and maintains the cancer stem cell population in ovarian cancer cells. J Ovarian Res 2011; 4: 7–2215-4-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lobe CG, Koop KE, Kreppner W, Lomeli H, Gertsenstein M, Nagy A . Z/AP, a double reporter for cre-mediated recombination. Dev Biol 1999; 208: 281–292.

    Article  CAS  PubMed  Google Scholar 

  51. Araki A, Kanai T, Ishikura T, Makita S, Uraushihara K, Iiyama R et al. MyD88-deficient mice develop severe intestinal inflammation in dextran sodium sulfate colitis. J Gastroenterol 2005; 40: 16–23.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Don Harms and Rolen Quadros of the mouse genome-engineering core at the University of Nebraska Medical Center (UNMC) for the electroporation, microinjection and generation of chimera for Muc4 knockout mice. We thank UNMC tissue sciences facility for processing of tissues used in the study. We also thank Dr Imayavaramban Lakshmanan and Kavita Mallya for technical assistance. The work in the manuscript, in parts, was supported by the grants from the National Institutes of Health (RO1 CA 78590, RO1 CA183459, UO1CA111294, SPORE P50CA127297, TMEN U54CA163120 and R03 CA167342).

Author contributions

SD, SR and SKB: study concept and design; SD and SR: acquisition of data; CBG: generation of Muc4−/− mice; YS: histopathological analysis; LMS: statistics; SD, SR, HKR and SKB: analysis and interpretation of data; SD and SKB: wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S K Batra.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S., Rachagani, S., Sheinin, Y. et al. Mice deficient in Muc4 are resistant to experimental colitis and colitis-associated colorectal cancer. Oncogene 35, 2645–2654 (2016). https://doi.org/10.1038/onc.2015.327

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.327

Search

Quick links