Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Disrupting Na+,HCO3-cotransporter NBCn1 (Slc4a7) delays murine breast cancer development

Subjects

Abstract

Increased metabolism and insufficient blood supply cause acidic waste product accumulation in solid cancers. During carcinogenesis, cellular acid extrusion is upregulated but the underlying molecular mechanisms and their consequences for cancer growth and progression have not been established. Genome-wide association studies have indicated a possible link between the Na+,HCO3-cotransporter NBCn1 (SLC4A7) and breast cancer. We tested the functional consequences of NBCn1 knockout (KO) for breast cancer development. NBCn1 protein expression increased 2.5-fold during breast carcinogenesis and was responsible for the increased net acid extrusion and alkaline intracellular pH of breast cancer compared with normal breast tissue. Genetic disruption of NBCn1 delayed breast cancer development: tumor latency was ~50% increased while tumor growth rate was ~65% reduced in NBCn1 KO compared with wild-type (WT) mice. Breast cancer histopathology in NBCn1 KO mice differed from that in WT mice and included less aggressive tumor types. The extracellular tumor microenvironment in NBCn1 KO mice contained higher concentrations of glucose and lower concentrations of lactate than that in WT mice. Independently of NBCn1 genotype, the cleaved fraction of poly(ADP-ribose) polymerase (PARP)-1 and expression of monocarboxylate transporter (MCT)1 increased while phosphorylation of Akt and ERK1 decreased as functions of tumor volume. Cell proliferation, evaluated from Ki-67 and phospho-histone H3 staining, was ~60% lower in breast cancer of NBCn1 KO than that of WT mice when corrected for variations in tumor size. We conclude that NBCn1 facilitates acid extrusion from breast cancer tissue, maintains the alkaline intracellular environment and promotes aggressive cancer development and growth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M et al. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015; 136: E359–E386.

    Article  CAS  PubMed  Google Scholar 

  2. Cardone RA, Casavola V, Reshkin SJ . The role of disturbed pH dynamics and the Na+/H+ exchanger in metastasis. Nat Rev Cancer 2005; 5: 786–795.

    Article  CAS  PubMed  Google Scholar 

  3. Lee S, Mele M, Vahl P, Christiansen PM, Jensen VED, Boedtkjer E . Na+, HCO3--cotransport is functionally upregulated during human breast carcinogenesis and required for the inverted pH gradient across the plasma membrane. Pflugers Arch 2015; 467: 367–377.

    Article  CAS  PubMed  Google Scholar 

  4. Andersen AP, Moreira JM, Pedersen SF . Interactions of ion transporters and channels with cancer cell metabolism and the tumour microenvironment. Philos Trans R Soc Lond B Biol Sci 2014; 369: 20130098.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Vaupel P, Kallinowski F, Okunieff P . Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res 1989; 49: 6449–6465.

    CAS  PubMed  Google Scholar 

  6. Parks SK, Chiche J, Pouyssegur J . Disrupting proton dynamics and energy metabolism for cancer therapy. Nat Rev Cancer 2013; 13: 611–623.

    Article  CAS  PubMed  Google Scholar 

  7. Pelicano H, Martin DS, Xu RH, Huang P . Glycolysis inhibition for anticancer treatment. Oncogene 2006; 25: 4633–4646.

    Article  CAS  PubMed  Google Scholar 

  8. Jenkins CM, Yang J, Sims HF, Gross RW . Reversible high affinity inhibition of phosphofructokinase-1 by acyl-CoA: a mechanism integrating glycolytic flux with lipid metabolism. J Biol Chem 2011; 286: 11937–11950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yalcin A, Telang S, Clem B, Chesney J . Regulation of glucose metabolism by 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases in cancer. Exp Mol Pathol 2009; 86: 174–179.

    Article  CAS  PubMed  Google Scholar 

  10. Trivedi B, Danforth WH . Effect of pH on the kinetics of frog muscle phosphofructokinase. J Biol Chem 1966; 241: 4110–4112.

    CAS  PubMed  Google Scholar 

  11. Fidelman ML, Seeholzer SH, Walsh KB, Moore RD . Intracellular pH mediates action of insulin on glycolysis in frog skeletal muscle. Am J Physiol 1982; 242: C87–C93.

    Article  CAS  PubMed  Google Scholar 

  12. Loo SY, Chang MK, Chua CS, Kumar AP, Pervaiz S, Clement MV . NHE-1: a promising target for novel anti-cancer therapeutics. Curr Pharm Des 2012; 18: 1372–1382.

    Article  PubMed  Google Scholar 

  13. Chiche J, Le FY, Vilmen C, Frassineti F, Daniel L, Halestrap AP et al. In vivo pH in metabolic-defective Ras-transformed fibroblast tumors: key role of the monocarboxylate transporter, MCT4, for inducing an alkaline intracellular pH. Int J Cancer 2012; 130: 1511–1520.

    Article  CAS  PubMed  Google Scholar 

  14. De Milito A, Marino ML, Fais S . A rationale for the use of proton pump inhibitors as antineoplastic agents. Curr Pharm Des 2012; 18: 1395–1406.

    Article  CAS  PubMed  Google Scholar 

  15. Silva AS, Yunes JA, Gillies RJ, Gatenby RA . The potential role of systemic buffers in reducing intratumoral extracellular pH and acid-mediated invasion. Cancer Res 2009; 69: 2677–2684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Robertson N, Potter C, Harris AL . Role of carbonic anhydrase IX in human tumor cell growth, survival, and invasion. Cancer Res 2004; 64: 6160–6165.

    Article  CAS  PubMed  Google Scholar 

  17. Swietach P, Patiar S, Supuran CT, Harris AL, Vaughan-Jones RD . The role of carbonic anhydrase 9 in regulating extracellular and intracellular pH in three-dimensional tumor cell growths. J Biol Chem 2009; 284: 20299–20310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Boedtkjer E, Moreira JM, Mele M, Vahl P, Wielenga VT, Christiansen PM et al. Contribution of Na+,HCO3--cotransport to cellular pH control in human breast cancer: a role for the breast cancer susceptibility locus NBCn1 (SLC4A7). Int J Cancer 2013; 132: 1288–1299.

    Article  CAS  PubMed  Google Scholar 

  19. Aalkjaer C, Boedtkjer E, Choi I, Lee S . Cation-coupled bicarbonate transporters. Compr Physiol 2014; 4: 1605–1637.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chen W, Zhong R, Ming J, Zou L, Zhu B, Lu X et al. The SLC4A7 variant rs4973768 is associated with breast cancer risk: evidence from a case-control study and a meta-analysis. Breast Cancer Res Treat 2012; 136: 847–857.

    Article  CAS  PubMed  Google Scholar 

  21. Boedtkjer E, Bunch L, Pedersen SF . Physiology, pharmacology and pathophysiology of the pH regulatory transport proteins NHE1 and NBCn1: Similarities, differences and implications for cancer therapy. Curr Pharm Des 2012; 18: 1345–1371.

    Article  CAS  PubMed  Google Scholar 

  22. Landis MD, Seachrist DD, Abdul-Karim FW, Keri RA . Sustained trophism of the mammary gland is sufficient to accelerate and synchronize development of ErbB2/Neu-induced tumors. Oncogene 2006; 25: 3325–3334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Halestrap AP, Wilson MC . The monocarboxylate transporter family-role and regulation. IUBMB Life 2012; 64: 109–119.

    Article  CAS  PubMed  Google Scholar 

  24. Eigenbrodt E, Kallinowski F, Ott M, Mazurek S, Vaupel P . Pyruvate kinase and the interaction of amino acid and carbohydrate metabolism in solid tumors. Anticancer Res 1998; 18: 3267–3274.

    CAS  PubMed  Google Scholar 

  25. Lauritzen G, Jensen MB, Boedtkjer E, Dybboe R, Aalkjaer C, Nylandsted J et al. NBCn1 and NHE1 expression and activity in ΔNErbB2 receptor-expressing MCF-7 breast cancer cells: Contributions to pHi regulation and chemotherapy resistance. Exp Cell Res 2010; 316: 2538–2553.

    Article  CAS  PubMed  Google Scholar 

  26. Lauritzen G, Stock CM, Lemaire J, Lund SF, Jensen MF, Damsgaard B et al. The Na+/H+ exchanger NHE1, but not the Na+,HCO3- cotransporter NBCn1, regulates motility of MCF7 breast cancer cells expressing constitutively active ErbB2. Cancer Lett 2012; 317: 172–183.

    Article  CAS  PubMed  Google Scholar 

  27. Gorbatenko A, Olesen CW, Morup N, Thiel G, Kallunki T, Valen E et al. ErbB2 upregulates the Na+,HCO3--cotransporter NBCn1/SLC4A7 in human breast cancer cells via Akt, ERK, Src, and Kruppel-like factor 4. FASEB J 2014; 28: 350–363.

    Article  CAS  PubMed  Google Scholar 

  28. Smulson ME, Simbulan-Rosenthal CM, Boulares AH, Yakovlev A, Stoica B, Iyer S et al. Roles of poly(ADP-ribosyl)ation and PARP in apoptosis, DNA repair, genomic stability and functions of p53 and E2F-1. Adv Enzyme Regul 2000; 40: 183–215.

    Article  CAS  PubMed  Google Scholar 

  29. Motoshima H, Goldstein BJ, Igata M, Araki E . AMPK and cell proliferation-AMPK as a therapeutic target for atherosclerosis and cancer. J Physiol 2006; 574: 63–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Green DR, Galluzzi L, Kroemer G . Cell biology. Metabolic control of cell death. Science 2014; 345: 1250256.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Freedman ML, Monteiro AN, Gayther SA, Coetzee GA, Risch A, Plass C et al. Principles for the post-GWAS functional characterization of cancer risk loci. Nat Genet 2011; 43: 513–518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ahmed S, Thomas G, Ghoussaini M, Healey CS, Humphreys MK, Platte R et al. Newly discovered breast cancer susceptibility loci on 3p24 and 17q23.2. Nat Genet 2009; 41: 585–590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Long J, Shu XO, Cai Q, Gao YT, Zheng Y, Li G et al. Evaluation of breast cancer susceptibility loci in Chinese women. Cancer Epidemiol Biomarkers Prev 2010; 19: 2357–2365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Han W, Woo JH, Yu JH, Lee MJ, Moon HG, Kang D et al. Common genetic variants associated with breast cancer in Korean women and differential susceptibility according to intrinsic subtype. Cancer Epidemiol Biomarkers Prev 2011; 20: 793–798.

    Article  CAS  PubMed  Google Scholar 

  35. Sueta A, Ito H, Kawase T, Hirose K, Hosono S, Yatabe Y et al. A genetic risk predictor for breast cancer using a combination of low-penetrance polymorphisms in a Japanese population. Breast Cancer Res Treat 2012; 132: 711–721.

    Article  CAS  PubMed  Google Scholar 

  36. Hulikova A, Harris AL, Vaughan-Jones RD, Swietach P . Regulation of intracellular pH in cancer cell lines under normoxia and hypoxia. J Cell Physiol 2013; 228: 743–752.

    Article  CAS  PubMed  Google Scholar 

  37. Balgi AD, Diering GH, Donohue E, Lam KK, Fonseca BD, Zimmerman C et al. Regulation of mTORC1 signaling by pH. PLoS One 2011; 6: e21549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pedersen SF, Darborg BV, Rasmussen M, Nylandsted J, Hoffmann EK . The Na+/H+ exchanger, NHE1, differentially regulates mitogen-activated protein kinase subfamilies after osmotic shrinkage in Ehrlich Lettre Ascites cells. Cell Physiol Biochem 2007; 20: 735–750.

    Article  CAS  PubMed  Google Scholar 

  39. Brunner A, Riss P, Heinze G, Brustmann H . pHH3 and survivin are co-expressed in high-risk endometrial cancer and are prognostic relevant. Br J Cancer 2012; 107: 84–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Inwald EC, Klinkhammer-Schalke M, Hofstadter F, Zeman F, Koller M, Gerstenhauer M et al. Ki-67 is a prognostic parameter in breast cancer patients: results of a large population-based cohort of a cancer registry. Breast Cancer Res Treat 2013; 139: 539–552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Boedtkjer E, Praetorius J, Matchkov VV, Stankevicius E, Mogensen S, Füchtbauer AC et al. Disruption of Na+,HCO3--cotransporter NBCn1 (slc4a7) inhibits NO-mediated vasorelaxation, smooth muscle Ca2+-sensitivity and hypertension development in mice. Circulation 2011; 124: 1819–1829.

    Article  CAS  PubMed  Google Scholar 

  42. Gonzalez-Suarez E, Jacob AP, Jones J, Miller R, Roudier-Meyer MP, Erwert R et al. RANK ligand mediates progestin-induced mammary epithelial proliferation and carcinogenesis. Nature 2010; 468: 103–107.

    Article  CAS  PubMed  Google Scholar 

  43. Rosner A, Miyoshi K, Landesman-Bollag E, Xu X, Seldin DC, Moser AR et al. Pathway pathology: histological differences between ErbB/Ras and Wnt pathway transgenic mammary tumors. Am J Pathol 2002; 161: 1087–1097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cardiff RD, Anver MR, Gusterson BA, Hennighausen L, Jensen RA, Merino MJ et al. The mammary pathology of genetically engineered mice: the consensus report and recommendations from the Annapolis meeting. Oncogene 2000; 19: 968–988.

    Article  CAS  PubMed  Google Scholar 

  45. Currier N, Solomon SE, Demicco EG, Chang DL, Farago M, Ying H et al. Oncogenic signaling pathways activated in DMBA-induced mouse mammary tumors. Toxicol Pathol 2005; 33: 726–737.

    Article  CAS  PubMed  Google Scholar 

  46. Boron WF, De Weer P . Intracellular pH transients in squid giant axons caused by CO2, NH3, and metabolic inhibitors. J Gen Physiol 1976; 67: 91–112.

    Article  CAS  PubMed  Google Scholar 

  47. Boedtkjer E, Praetorius J, Aalkjaer C . NBCn1 (slc4a7) mediates the Na+-dependent bicarbonate transport important for regulation of intracellular pH in mouse vascular smooth muscle cells. Circ Res 2006; 98: 515–523.

    Article  CAS  PubMed  Google Scholar 

  48. Roos A, Boron WF . Intracellular pH. Physiol Rev 1981; 61: 296–434.

    Article  CAS  PubMed  Google Scholar 

  49. Damkier HH, Nielsen S, Praetorius J . An anti-NH2-terminal antibody localizes NBCn1 to heart endothelia and skeletal and vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 2006; 290: H172–H180.

    Article  CAS  PubMed  Google Scholar 

  50. Mortensen B, Hingst JR, Frederiksen N, Hansen RW, Christiansen CS, Iversen N et al. Effect of birth weight and 12 weeks of exercise training on exercise-induced AMPK signaling in human skeletal muscle. Am J Physiol Endocrinol Metab 2013; 304: E1379–E1390.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support was provided from the Danish Council for Independent Research (10-094816 to EB and 12-127290 to SFP), Novo Nordisk Foundation (2131 and 7393 to EB), Danish Cancer Society (R72-A4273-13-S2 to EB) and MEMBRANES at Aarhus University. We thank Dr. Christian Aalkjaer (Aarhus University) for valuable discussions, Drs Frauke Alves and Roser Ufartes (Max Planck Institute for Experimental Medicine) for advice on chemical breast cancer induction and Dr Vibeke Dam, Jane Rønn and Ida Tvilling for expert technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E Boedtkjer.

Ethics declarations

Competing interests

Ebbe Boedtkjer is inventor on a patent application based on work described here. The other authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S., Axelsen, T., Andersen, A. et al. Disrupting Na+,HCO3-cotransporter NBCn1 (Slc4a7) delays murine breast cancer development. Oncogene 35, 2112–2122 (2016). https://doi.org/10.1038/onc.2015.273

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.273

This article is cited by

Search

Quick links