Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

CSF1-ETS2-induced microRNA in myeloid cells promote metastatic tumor growth

Abstract

Metastasis of solid tumors is associated with poor prognosis and bleak survival rates. Tumor-infiltrating myeloid cells (TIMs) are known to promote metastasis, but the mechanisms underlying their collaboration with tumor cells remain unknown. Here, we report an oncogenic role for microRNA (miR) in driving M2 reprogramming in TIMs, characterized by the acquisition of pro-tumor and pro-angiogenic properties. The expression of miR-21, miR-29a, miR-142-3p and miR-223 increased in myeloid cells during tumor progression in mouse models of breast cancer and melanoma metastasis. Further, we show that these miRs are regulated by the CSF1-ETS2 pathway in macrophages. A loss-of-function approach utilizing selective depletion of the miR-processing enzyme Dicer in mature myeloid cells blocks angiogenesis and metastatic tumor growth. Ectopic expression of miR-21 and miR-29a promotes angiogenesis and tumor cell proliferation through the downregulation of anti-angiogenic genes such as Col4a2, Spry1 and Timp3, whereas knockdown of the miRs impedes these processes. miR-21 and miR-29a are expressed in Csf1r+ myeloid cells associated with human metastatic breast cancer, and levels of these miRs in CD115+ non-classical monocytes correlates with metastatic tumor burden in patients. Taken together, our results suggest that miR-21 and miR-29a are essential for the pro-tumor functions of myeloid cells and the CSF1-ETS2 pathway upstream of the miRs serves as an attractive therapeutic target for the inhibition of M2 remodeling of macrophages during malignancy. In addition, miR-21 and miR-29a in circulating myeloid cells may potentially serve as biomarkers to measure therapeutic efficacy of targeted therapies for CSF1 signaling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Bröcker EB, Zwadlo G, Suter L, Brune M, Sorg C . Infiltration of primary and metastatic melanomas with macrophages of the 25F9-positive phenotype. Cancer Immunol Immunother 1987; 25: 81–86.

    Article  PubMed  Google Scholar 

  2. Leek RD, Harris AL . Tumor-associated macrophages in breast cancer. J Mammary Gland Biol Neoplasia 2002; 7: 177–189.

    Article  PubMed  Google Scholar 

  3. Jensen TO, Schmidt H, Møller HJ, Høyer M, Maniecki MB, Sjoegren P et al. Macrophage markers in serum and tumor have prognostic impact in American Joint Committee on Cancer stage I/II melanoma. J Clin Oncol 2009; 27: 3330–3337.

    Article  PubMed  Google Scholar 

  4. Qian BZ, Pollard JW . Macrophage diversity enhances tumor progression and metastasis. Cell 2010; 141: 39–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen Q, Zhang XH, Massague J . Macrophage binding to receptor VCAM-1 transmits survival signals in breast cancer cells that invade the lungs. Cancer Cell 2011; 20: 538–549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Qian B, Deng Y, Im JH, Muschel RJ, Zou Y, Li J et al. A distinct macrophage population mediates metastatic breast cancer cell extravasation, establishment and growth. PLoS One 2009; 4: e6562.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Qian BZ, Li J, Zhang H, Kitamura T, Zhang J, Campion LR et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 2011; 475: 222–225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yan HH, Pickup M, Pang Y, Gorska AE, Li Z, Chytil A et al. Gr-1+CD11b+ myeloid cells tip the balance of immune protection to tumor promotion in the premetastatic lung. Cancer Res 2010; 70: 6139–6149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang T, Ge Y, Xiao M, Lopez-Coral A, Azuma R, Somasundaram R et al. Melanoma-derived conditioned media efficiently induce the differentiation of monocytes to macrophages that display a highly invasive gene signature. Pigment Cell Melanoma Res 2012; 4: 493–505.

    Article  Google Scholar 

  10. Chen P, Huang Y, Bong R, Ding Y, Song N, Wang X et al. Tumor-associated macrophages promote angiogenesis and melanoma growth via adrenomedullin in a paracrine and autocrine manner. Clin Cancer Res 2011; 17: 7230–7239.

    Article  CAS  PubMed  Google Scholar 

  11. Zaidi MR, Davis S, Noonan FP, Graff-Cherry C, Hawley TS, Walker RL et al. Interferon-γ links ultraviolet radiation to melanomagenesis in mice. Nature 2011; 469: 548–553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Esquela-Kerscher A, Slack FJ . Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer 2006; 6: 259–269.

    Article  CAS  PubMed  Google Scholar 

  13. O'Connell RM, Rao DS, Chaudhuri AA, Baltimore D . Physiological and pathological roles for microRNAs in the immune system. Nat Rev Immunol 2010; 10: 111–122.

    Article  CAS  PubMed  Google Scholar 

  14. Liu G, Abraham E . MicroRNAs in immune response and macrophage polarization. Arterioscler Thromb Vasc Biol 2013; 33: 170–177.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Squadrito ML, Pucci F, Magri L, Moi D, Gilfillan GD, Ranghetti A et al. miR-511-3p modulates genetic programs of tumor-associated macrophages. Cell Rep 2012; 1: 141–154.

    Article  CAS  PubMed  Google Scholar 

  16. Zonari E, Pucci F, Saini M, Mazzieri R, Politi LS, Gentner B et al. A role for miR-155 in enabling tumor-infiltrating innate immune cells to mount effective anti-tumor responses. Blood 2013; 122: 243–252.

    Article  CAS  PubMed  Google Scholar 

  17. Zabuawala T, Taffany DA, Sharma SM, Merchant A, Adair B, Srinivasan R et al. An ets2-driven transcriptional program in tumor-associated macrophages promotes tumor metastasis. Cancer Res 2010; 70: 1323–1333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fowles LF, Martin ML, Nelsen L, Stacey KJ, Redd D, Clark YM et al. Persistent activation of mitogen-activated protein kinases p42 and p44 and ets-2 phosphorylation in response to colony-stimulating factor 1/c-fms signaling. Mol Cell Biol 1998; 18: 5148–5156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Conway JG, McDonald B, Parham J, Keith B, Rusnak DW, Shaw E et al. Inhibition of colony-stimulating-factor-1 signaling in vivo with the orally bioavailable cFMS kinase inhibitor GW2580. Proc Natl Acad Sci USA 2005; 102: 16078–16083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Clausen BE, Burkhardt C, Reith W, Renkawitz R, Forster I . Conditional gene targeting in macrophages and granulocytes using LysMcre mice. Transgenic Res 1999; 8: 265–277.

    Article  CAS  PubMed  Google Scholar 

  21. Rae F, Woods K, Sasmono T, Campanale N, Taylor D, Ovchinnikov DA et al. Characterisation and trophic functions of murine embryonic macrophages based upon the use of a Csf1r-EGFP transgene reporter. Dev Biol 2007; 308: 232–246.

    Article  CAS  PubMed  Google Scholar 

  22. Tagliani E, Shi C, Nancy P, Tay CS, Pamer EG, Erlebacher A . Coordinate regulation of tissue macrophage and dendritic cell population dynamics by CSF-1. J Exp Med 2011; 208: 1901–1916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mossadegh-Keller N, Sarrazin S, Kandalla PK, Espinosa L, Stanley ER, Nutt S et al. M-CSF instructs myeloid lineage fate in single haematopoietic stem cells. Nature 2013; 497: 239–243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yan LX, Huang XF, Shao Q, Huang MY, Deng L, Wu QL et al. MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA 2008; 14: 2348–2360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gebeshuber CA, Zatloukal K, Martinez J . miR-29a suppresses tristetraprolin, which is a regulator of epithelial polarity and metastasis. EMBO Rep 2009; 10: 400–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gao D, Mittal V . The role of bone-marrow-derived cells in tumor growth, metastasis initiation and progression. Trends Mol Med 2009; 15: 333–343.

    Article  CAS  PubMed  Google Scholar 

  27. Gabrilovich DI, Ostrand-Rosenberg S, Bronte V . Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 2012; 22: 253–268.

    Article  Google Scholar 

  28. Strauss-Ayali D, Conrad SM, Mosser DM . Monocyte subpopulations and their differentiation patterns during infection. J Leukoc Biol 2007; 82: 244–252.

    Article  CAS  PubMed  Google Scholar 

  29. Sica A, Bronte V . Altered macrophage differentiation and immune dysfunction in tumor development. J Clin Invest 2007; 117: 1155–1166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. De Palma M, Venneri MA, Galli R, Sergi Sergi L, Politi LS, Sampaolesi M et al. Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 2005; 8: 211–226.

    Article  CAS  PubMed  Google Scholar 

  31. Lu TX, Hartner J, Lim EJ, Fabry V, Mingler MK, Cole ET et al. MicroRNA-21 limits in vivo immune response-mediated activation of the IL-12/IFN-gamma pathway, Th1 polarization, and the severity of delayed-type hypersensitivity. J Immunol 2011; 187: 3362–3373.

    Article  CAS  PubMed  Google Scholar 

  32. Ma F, Xu S, Liu X, Zhang Q, Xu X, Liu M et al. The microRNA miR-29 controls innate and adaptive immune responses to intracellular bacterial infection by targeting interferon-gamma. Nat Immunol 2011; 12: 861–869.

    Article  CAS  PubMed  Google Scholar 

  33. Sheedy FJ, Palsson-McDermott E, Hennessy EJ, Martin C, O'Leary JJ, Ruan Q et al. Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21. Nat Immunol 2010; 11: 141–147.

    Article  CAS  PubMed  Google Scholar 

  34. Sica A, Mantovani A . Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 2012; 122: 787–795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Brain O, Owens BM, Pichulik T, Allan P, Khatamzas E, Leslie A et al. The intracellular sensor NOD2 induces microRNA-29 expression in human dendritic cells to limit IL-23 release. Immunity 2013; 39: 521–536.

    Article  CAS  PubMed  Google Scholar 

  36. Qi JH, Ebrahem Q, Moore N, Murphy G, Claesson-Welsh L, Bond M et al. A novel function for tissue inhibitor of metalloproteinases-3 (TIMP3): inhibition of angiogenesis by blockage of VEGF binding to VEGF receptor-2. Nat Med 2003; 9: 407–415.

    Article  CAS  PubMed  Google Scholar 

  37. Gabriely G, Wurdinger T, Kesari S, Esau CC, Burchard J, Linsley PS et al. MicroRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators. Mol Cell Biol 2008; 28: 5369–5380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Marneros AG, Olsen BR . The role of collagen-derived proteolytic fragments in angiogenesis. Matrix Biol 2001; 20: 337–345.

    Article  CAS  PubMed  Google Scholar 

  39. Lamagna C, Aurrand-Lions M, Imhof BA . Dual role of macrophages in tumor growth and angiogenesis. J Leukoc Biol 2006; 80: 705–713.

    Article  CAS  PubMed  Google Scholar 

  40. Cho HJ, Jung JI, Lim do Y, Kwon GT, Her S, Park JH et al. Bone marrow-derived, alternatively activated macrophages enhance solid tumor growth and lung metastasis of mammary carcinoma cells in a Balb/C mouse orthotopic model. Breast Cancer Res 2012; 14: R81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fabbri M, Paone A, Calore F, Galli R, Gaudio E, Santhanam R et al. MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proc Natl Acad Sci USA 2012; 109: E2110–E2116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yang M, Chen J, Su F, Yu B, Su F, Lin L et al. Microvesicles secreted by macrophages shuttle invasion-potentiating microRNAs into breast cancer cells. Mol Cancer 2011; 10: 117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Si ML, Zhu S, Wu H, Lu Z, Wu F, Mo YY . miR-21-mediated tumor growth. Oncogene 2007; 26: 2799–2803.

    Article  CAS  PubMed  Google Scholar 

  44. Croce CM . Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 2009; 10: 704–714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chou J, Lin JH, Brenot A, Kim JW, Provot S, Werb Z . GATA3 suppresses metastasis and modulates the tumour microenvironment by regulating microRNA-29b expression. Nat Cell Biol 2013; 15: 201–213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kumar MS, Pester RE, Chen CY, Lane K, Chin C, Lu J et al. Dicer1 functions as a haploinsufficient tumor suppressor. Genes Dev 2009; 23: 2700–2704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. DeNardo DG, Brennan DJ, Rexhepaj E, Ruffell B, Shiao SL, Madden SF et al. Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov 2011; 1: 54–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Priceman SJ, Sung JL, Shaposhnik Z, Burton JB, Torres-Collado AX, Moughon DL et al. Targeting distinct tumor-infiltrating myeloid cells by inhibiting CSF-1 receptor: combating tumor evasion of antiangiogenic therapy. Blood 2010; 115: 1461–1471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pyonteck SM, Akkari L, Schuhmacher AJ, Bowman RL, Sevenich L, Quail DF et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med 2013; 19: 1264–1272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mok S, Koya RC, Tsui C, Xu J, Robert L, Wu L et al. Inhibition of CSF1 receptor improves the anti-tumor efficacy of adoptive cell transfer immunotherapy. Cancer Res 2014; 74: 153–161.

    Article  CAS  PubMed  Google Scholar 

  51. Wei G, Guo J, Doseff AI, Kusewitt DF, Man AK, Oshima RG et al. Activated Ets2 is required for persistent inflammatory responses in the motheaten viable model. J Immunol 2004; 173: 1374–1379.

    Article  CAS  PubMed  Google Scholar 

  52. Yamamoto H, Flannery ML, Kupriyanov S, Pearce J, McKercher SR, Henkel GW et al. Defective trophoblast function in mice with a targeted mutation of Ets2. Genes Dev 1998; 12: 1315–1326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pei XF, Noble MS, Davoli MA, Rosfjord E, Tilli MT, Furth PA et al. Explant-cell culture of primary mammary tumors from MMTV-c-Myc transgenic mice. In Vitro Cell Dev Biol Anim 2004; 40: 14–21.

    Article  PubMed  Google Scholar 

  54. Dunham LJ, Stewart HL . A survey of transplantable and transmissible animal tumors. J Nat Cancer Inst 1953; 13: 1299–1377.

    CAS  PubMed  Google Scholar 

  55. Fidler IJ . Biological behavior of malignant melanoma cells correlated to their survival in vivo. Cancer Res 1975; 35: 218–224.

    CAS  PubMed  Google Scholar 

  56. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T et al. Fiji: an open-source platform for biological-image analysis. Nat Methods 2012; 9: 676–682.

    Article  CAS  PubMed  Google Scholar 

  57. Hu R, Sharma SM, Bronisz A, Srinivasan R, Sankar U, Ostrowski MC . Eos, MITF, and PU.1 recruit corepressors to osteoclast-specific genes in committed myeloid progenitors. Mol Cell Biol 2007; 27: 4018–4027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Livak KJ, Schmittgen TD . Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001; 25: 402–408.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Yongqi Wu for help with flow cytometry. We also wish to acknowledge the histology core, OSU Comprehensive Cancer Center Microarray, Nucleic Acids, Analytical Cytometry, Microscopy and Biostatistics Core Shared Resources for technical assistance. This work was funded through National Institutes of Health grants (NIHPO1CA097189 and RO1CA053271) and the Evelyn Simmers Foundation to MCO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M C Ostrowski.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathsyaraja, H., Thies, K., Taffany, D. et al. CSF1-ETS2-induced microRNA in myeloid cells promote metastatic tumor growth. Oncogene 34, 3651–3661 (2015). https://doi.org/10.1038/onc.2014.294

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.294

This article is cited by

Search

Quick links