Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

CD99 suppresses osteosarcoma cell migration through inhibition of ROCK2 activity

Abstract

CD99, a transmembrane protein encoded by MIC2 gene is involved in multiple cellular events including cell adhesion and migration, apoptosis, cell differentiation and regulation of protein trafficking either in physiological or pathological conditions. In osteosarcoma, CD99 is expressed at low levels and functions as a tumour suppressor. The full-length protein (CD99wt) and the short-form harbouring a deletion in the intracytoplasmic domain (CD99sh) have been associated with distinct functional outcomes with respect to tumour malignancy. In this study, we especially evaluated modulation of cell–cell contacts, reorganisation of the actin cytoskeleton and modulation of signalling pathways by comparing osteosarcoma cells characterised by different metastasis capabilities and CD99 expression, to identify molecular mechanisms responsible for metastasis. Our data indicate that forced expression of CD99wt induces recruitment of N-cadherin and β-catenin to adherens junctions. In addition, transfection of CD99wt inhibits the expression of several molecules crucial to the remodelling of the actin cytoskeleton, such as ACTR2, ARPC1A, Rho-associated, coiled–coil containing protein kinase 2 (ROCK2) as well as ezrin, an ezrin/radixin/moesin family member that has been clearly associated with tumour progression and metastatic spread in osteosarcoma. Functional studies point to ROCK2 as a crucial intracellular mediator regulating osteosarcoma migration. By maintaining c-Src in an inactive conformation, CD99wt inhibits ROCK2 signalling and this leads to ezrin decrease at cell membrane while N-cadherin and β-catenin translocate to the plasma membrane and function as main molecular bridges for actin cytoskeleton. Taken together, we propose that the re-expression of CD99wt, which is generally present in osteoblasts but lost in osteosarcoma, through inhibition of c-Src and ROCK2 activity, manages to increase contact strength and reactivate stop-migration signals that counteract the otherwise dominant promigratory action of ezrin in osteosarcoma cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Levy R, Dilley J, Fox RI, Warnke R . A human thymus-leukemia antigen defined by hybridoma monoclonal antibodies. Proc Natl Acad Sci USA 1979; 76: 6552–6556.

    Article  CAS  Google Scholar 

  2. Hahn JH, Kim MK, Choi EY, Kim SH, Sohn HW, Ham DI et al. CD99 (MIC2) regulates the LFA-1/ICAM-1-mediated adhesion of lymphocytes, and its gene encodes both positive and negative regulators of cellular adhesion. J Immunol 1997; 159: 2250–2258.

    CAS  Google Scholar 

  3. Bernard G, Breittmayer JP, de Matteis M, Trampont P, Hofman P, Senik A et al. Apoptosis of immature thymocytes mediated by E2/CD99. J Immunol 1997; 158: 2543–2550.

    CAS  Google Scholar 

  4. Bernard G, Raimondi V, Alberti I, Pourtein M, Widjenes J, Ticchioni M et al. CD99 (E2) upregulates alpha4beta1-dependent T-cell adhesion to inflamed vascular endothelium under flow conditions. Eur J Immunol 2000; 30: 3061–3065.

    Article  CAS  Google Scholar 

  5. Bernard G, Zoccola D, Deckert M, Breittmayer JP, Aussel C, Bernard A . The E2 molecule (CD99) specifically triggers homotypic aggregation of CD4+ CD8+ thymocytes. J Immunol 1995; 154: 26–32.

    CAS  Google Scholar 

  6. Cerisano V, Aalto Y, Perdichizzi S, Bernard G, Manara MC, Benini S et al. Molecular mechanisms of CD99-induced caspase-independent cell death and cell-cell adhesion in Ewing's sarcoma cells: actin and zyxin as key intracellular mediators. Oncogene 2004; 23: 5664–5674.

    Article  CAS  Google Scholar 

  7. Husak Z, Printz D, Schumich A, Potschger U, Dworzak MN . Death induction by CD99 ligation in TEL/AML1-positive acute lymphoblastic leukemia and normal B cell precursors. J Leukoc Biol 2010; 88: 405–412.

    Article  CAS  Google Scholar 

  8. Imbert AM, Belaaloui G, Bardin F, Tonnelle C, Lopez M, Chabannon C . CD99 expressed on human mobilized peripheral blood CD34+ cells is involved in transendothelial migration. Blood 2006; 108: 2578–2586.

    Article  CAS  Google Scholar 

  9. Jung KC, Kim NH, Park WS, Park SH, Bae Y . The CD99 signal enhances Fas-mediated apoptosis in the human leukemic cell line, Jurkat. FEBS Lett 2003; 554: 478–484.

    Article  CAS  Google Scholar 

  10. Pettersen RD, Bernard G, Olafsen MK, Pourtein M, Lie SO . CD99 signals caspase-independent T-cell death. J Immunol 2001; 166: 4931–4942.

    Article  CAS  Google Scholar 

  11. Schenkel AR, Dufour EM, Chew TW, Sorg E, Muller WA . The murine CD99-related molecule CD99-like 2 (CD99L2) is an adhesion molecule involved in the inflammatory response. Cell Commun Adhes 2007; 14: 227–237.

    Article  CAS  Google Scholar 

  12. Schenkel AR, Mamdouh Z, Chen X, Liebman RM, Muller WA . CD99 plays a major role in the migration of monocytes through endothelial junctions. Nat Immunol 2002; 3: 143–150.

    Article  CAS  Google Scholar 

  13. Sohn HW, Choi EY, Kim SH, Lee IS, Chung DH, Sung UA et al. Engagement of CD99 induces apoptosis through a calcineurin-independent pathway in Ewing's sarcoma cells. Am J Pathol 1998; 153: 1937–1945.

    Article  CAS  Google Scholar 

  14. Dworzak MN, Froschl G, Printz D, Zen LD, Gaipa G, Ratei R et al. CD99 expression in T-lineage ALL: implications for flow cytometric detection of minimal residual disease. Leukemia 2004; 18: 703–708.

    Article  CAS  Google Scholar 

  15. Dworzak MN, Fritsch G, Fleischer C, Printz D, Froschl G, Buchinger P et al. CD99 (MIC2) expression in paediatric B-lineage leukaemia/lymphoma reflects maturation-associated patterns of normal B-lymphopoiesis. Br J Haematol 1999; 105: 690–695.

    Article  CAS  Google Scholar 

  16. Manara MC, Bernard G, Lollini PL, Nanni P, Zuntini M, Landuzzi L et al. CD99 acts as an oncosuppressor in osteosarcoma. Mol Biol Cell 2006; 17: 1910–1921.

    Article  CAS  Google Scholar 

  17. Scotlandi K, Zuntini M, Manara MC, Sciandra M, Rocchi A, Benini S et al. CD99 isoforms dictate opposite functions in tumour malignancy and metastases by activating or repressing c-Src kinase activity. Oncogene 2007; 26: 6604–6618.

    Article  CAS  Google Scholar 

  18. Kim SH, Shin YK, Lee IS, Bae YM, Sohn HW, Suh YH et al. Viral latent membrane protein 1 (LMP-1)-induced CD99 downregulation in B cells leads to the generation of cells with Hodgkin's and Reed-Sternberg phenotype. Blood 2000; 95: 294–300.

    CAS  Google Scholar 

  19. Alberti I, Bernard G, Rouquette-Jazdanian AK, Pelassy C, Pourtein M, Aussel C et al. CD99 isoforms expression dictates T-cell functional outcomes. FASEB J 2002; 16: 1946–1948.

    Article  Google Scholar 

  20. Lee EJ, Lee HG, Park SH, Choi EY, Park SH . CD99 type II is a determining factor for the differentiation of primitive neuroectodermal cells. Exp Mol Med 2003; 35: 438–447.

    Article  CAS  Google Scholar 

  21. Byun HJ, Hong IK, Kim E, Jin YJ, Jeoung DI, Hahn JH et al. A splice variant of CD99 increases motility and MMP-9 expression of human breast cancer cells through the AKT-, ERK-, and JNK-dependent AP-1 activation signaling pathways. J Biol Chem 2006; 281: 34833–34847.

    Article  CAS  Google Scholar 

  22. D'Souza-Schorey C . Disassembling adherens junctions: breaking up is hard to do. Trends Cell Biol 2005; 15: 19–26.

    Article  CAS  Google Scholar 

  23. Derycke LD, Bracke ME . N-cadherin in the spotlight of cell–cell adhesion, differentiation, embryogenesis, invasion and signalling. Int J Dev Biol 2004; 48: 463–476.

    Article  CAS  Google Scholar 

  24. Kashima T, Kawaguchi J, Takeshita S, Kuroda M, Takanashi M, Horiuchi H et al. Anomalous cadherin expression in osteosarcoma. Possible relationships to metastasis and morphogenesis. Am J Pathol 1999; 155: 1549–1555.

    Article  CAS  Google Scholar 

  25. Kashima T, Nakamura K, Kawaguchi J, Takanashi M, Ishida T, Aburatani H et al. Overexpression of cadherins suppresses pulmonary metastasis of osteosarcoma in vivo. Int J Cancer 2003; 104: 147–154.

    Article  CAS  Google Scholar 

  26. Khanna C, Wan X, Bose S, Cassaday R, Olomu O, Mendoza A et al. The membrane-cytoskeleton linker ezrin is necessary for osteosarcoma metastasis. Nat Med 2004; 10: 182–186.

    Article  CAS  Google Scholar 

  27. Park HR, Jung WW, Bacchini P, Bertoni F, Kim YW, Park YK . Ezrin in osteosarcoma: comparison between conventional high-grade and central low-grade osteosarcoma. Pathol Res Pract 2006; 202: 509–515.

    Article  CAS  Google Scholar 

  28. Cai Y, Mohseny AB, Karperien M, Hogendoorn PC, Zhou G, Cleton-Jansen AM . Inactive Wnt/beta-catenin pathway in conventional high-grade osteosarcoma. J Pathol 2010; 220: 24–33.

    Article  CAS  Google Scholar 

  29. Nurnberg A, Kitzing T, Grosse R . Nucleating actin for invasion. Nat Rev Cancer 2011; 11: 177–187.

    Article  Google Scholar 

  30. Riento K, Ridley AJ . Rocks: multifunctional kinases in cell behaviour. Nat Rev Mol Cell Biol 2003; 4: 446–456.

    Article  CAS  Google Scholar 

  31. Zheng S, Huang J, Zhou K, Zhang C, Xiang Q, Tan Z et al. 17beta-estradiol enhances breast cancer cell motility and invasion via extra-nuclear activation of actin-binding protein ezrin. PLoS One 2011; 6: e22439.

    Article  CAS  Google Scholar 

  32. Bulut G, Hong SH, Chen K, Beauchamp EM, Rahim S, Kosturko GW et al. Small molecule inhibitors of ezrin inhibit the invasive phenotype of osteosarcoma cells. Oncogene 2012; 31: 269–281.

    Article  CAS  Google Scholar 

  33. Kim C, Shin E, Hong S, Chon HJ, Kim HR, Ahn JR et al. Clinical value of ezrin expression in primary osteosarcoma. Cancer Res Treat 2009; 41: 138–144.

    Article  CAS  Google Scholar 

  34. Jiao X, Katiyar S, Liu M, Mueller SC, Lisanti MP, Li A et al. Disruption of c-Jun reduces cellular migration and invasion through inhibition of c-Src and hyperactivation of ROCK II kinase. Mol Biol Cell 2008; 19: 1378–1390.

    Article  CAS  Google Scholar 

  35. Lee HH, Tien SC, Jou TS, Chang YC, Jhong JG, Chang ZF . Src-dependent phosphorylation of ROCK participates in regulation of focal adhesion dynamics. J Cell Sci 2010; 123: 3368–3377.

    Article  CAS  Google Scholar 

  36. Pankova K, Rosel D, Novotny M, Brabek J . The molecular mechanisms of transition between mesenchymal and amoeboid invasiveness in tumor cells. Cell Mol Life Sci 2010; 67: 63–71.

    Article  CAS  Google Scholar 

  37. Wolf K, Mazo I, Leung H, Engelke K, von Andrian UH, Deryugina EI et al. Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J Cell Biol 2003; 160: 267–277.

    Article  CAS  Google Scholar 

  38. Otsubo T, Iwaya K, Mukai Y, Mizokami Y, Serizawa H, Matsuoka T et al. Involvement of Arp2/3 complex in the process of colorectal carcinogenesis. Mod Pathol 2004; 17: 461–467.

    Article  CAS  Google Scholar 

  39. Laurila E, Savinainen K, Kuuselo R, Karhu R, Kallioniemi A . Characterization of the 7q21-q22 amplicon identifies ARPC1A, a subunit of the Arp2/3 complex, as a regulator of cell migration and invasion in pancreatic cancer. Genes Chromosomes Cancer 2009; 48: 330–339.

    Article  CAS  Google Scholar 

  40. Hall A, Nobes CD . Rho GTPases: molecular switches that control the organization and dynamics of the actin cytoskeleton. Philosl TransR Soc LonB, Biolog Sci 2000; 355: 965–970.

    Article  CAS  Google Scholar 

  41. Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G et al. Cell migration: integrating signals from front to back. Science 2003; 302: 1704–1709.

    Article  CAS  Google Scholar 

  42. Jaganathan BG, Ruester B, Dressel L, Stein S, Grez M, Seifried E et al. Rho inhibition induces migration of mesenchymal stromal cells. Stem Cells 2007; 25: 1966–1974.

    Article  CAS  Google Scholar 

  43. Borensztajn K, Peppelenbosch MP, Spek CA . Coagulation Factor Xa inhibits cancer cell migration via LIMK1-mediated cofilin inactivation. Thromb Res 2010; 125: e323–e328.

    Article  CAS  Google Scholar 

  44. Salhia B, Rutten F, Nakada M, Beaudry C, Berens M, Kwan A et al. Inhibition of Rho-kinase affects astrocytoma morphology, motility, and invasion through activation of Rac1. Cancer Res 2005; 65: 8792–8800.

    Article  CAS  Google Scholar 

  45. Zhang X, Li C, Gao H, Nabeka H, Shimokawa T, Wakisaka H et al. Rho kinase inhibitors stimulate the migration of human cultured osteoblastic cells by regulating actomyosin activity. Cell Mol Biol Lett 2011; 16: 279–295.

    Article  CAS  Google Scholar 

  46. Yoneda A, Multhaupt HA, Couchman JR . The Rho kinases I and II regulate different aspects of myosin II activity. J Cell Biol 2005; 170: 443–453.

    Article  CAS  Google Scholar 

  47. Lock FE, Ryan KR, Poulter NS, Parsons M, Hotchin NA . Differential regulation of adhesion complex turnover by ROCK1 and ROCK2. PLoS One 2012; 7: e31423.

    Article  CAS  Google Scholar 

  48. Yoneda A, Ushakov D, Multhaupt HA, Couchman JR . Fibronectin matrix assembly requires distinct contributions from Rho kinases I and -II. Mol Biol Cell 2007; 18: 66–75.

    Article  CAS  Google Scholar 

  49. Croft DR, Sahai E, Mavria G, Li S, Tsai J, Lee WM et al. Conditional ROCK activation in vivo induces tumor cell dissemination and angiogenesis. Cancer Res 2004; 64: 8994–9001.

    Article  CAS  Google Scholar 

  50. Kamai T, Tsujii T, Arai K, Takagi K, Asami H, Ito Y et al. Significant association of Rho/ROCK pathway with invasion and metastasis of bladder cancer. Clin Cancer Res 2003; 9: 2632–2641.

    CAS  Google Scholar 

  51. Vishnubhotla R, Sun S, Huq J, Bulic M, Ramesh A, Guzman G et al. ROCK-II mediates colon cancer invasion via regulation of MMP-2 and MMP-13 at the site of invadopodia as revealed by multiphoton imaging. Lab Invest 2007; 87: 1149–1158.

    Article  CAS  Google Scholar 

  52. Kamai T, Yamanishi T, Shirataki H, Takagi K, Asami H, Ito Y et al. Overexpression of RhoA, Rac1, and Cdc42 GTPases is associated with progression in testicular cancer. Clin Cancer Res 2004; 10: 4799–4805.

    Article  CAS  Google Scholar 

  53. Wong CC, Wong CM, Tung EK, Man K, Ng IO . Rho-kinase 2 is frequently overexpressed in hepatocellular carcinoma and involved in tumor invasion. Hepatology 2009; 49: 1583–1594.

    Article  CAS  Google Scholar 

  54. Yu H, Zhang Y, Ye L, Jiang WG . The FERM family proteins in cancer invasion and metastasis. Front Biosci 2011; 16: 1536–1550.

    Article  CAS  Google Scholar 

  55. Bruce B, Khanna G, Ren L, Landberg G, Jirstrom K, Powell C et al. Expression of the cytoskeleton linker protein ezrin in human cancers. Clin Exp Metastasis 2007; 24: 69–78.

    Article  CAS  Google Scholar 

  56. Nakamura H, Ozawa H . Immunolocalization of CD44 and the ERM family in bone cells of mouse tibiae. J Bone Miner Res 1996; 11: 1715–1722.

    Article  CAS  Google Scholar 

  57. Fievet BT, Gautreau A, Roy C, Del Maestro L, Mangeat P, Louvard D et al. Phosphoinositide binding and phosphorylation act sequentially in the activation mechanism of ezrin. J Cell Biol 2004; 164: 653–659.

    Article  CAS  Google Scholar 

  58. Hamada K, Shimizu T, Matsui T, Tsukita S, Hakoshima T . Structural basis of the membrane-targeting and unmasking mechanisms of the radixin FERM domain. EMBO J 2000; 19: 4449–4462.

    Article  CAS  Google Scholar 

  59. Louvet-Vallee S . ERM proteins: from cellular architecture to cell signaling. Biol cell 2000; 92: 305–316.

    Article  CAS  Google Scholar 

  60. Zhang Y, Li X, Qi J, Wang J, Liu X, Zhang H et al. Rock2 controls TGFbeta signaling and inhibits mesoderm induction in zebrafish embryos. J Cell Sci 2009; 122: 2197–2207.

    Article  CAS  Google Scholar 

  61. Rivat C, De Wever O, Bruyneel E, Mareel M, Gespach C, Attoub S . Disruption of STAT3 signaling leads to tumor cell invasion through alterations of homotypic cell-cell adhesion complexes. Oncogene 2004; 23: 3317–3327.

    Article  CAS  Google Scholar 

  62. Longhi A, Errani C, De Paolis M, Mercuri M, Bacci G . Primary bone osteosarcoma in the pediatric age: state of the art. Cancer Treat Rev 2006; 32: 423–436.

    Article  Google Scholar 

  63. Bacci G, Longhi A, Versari M, Mercuri M, Briccoli A, Picci P . Prognostic factors for osteosarcoma of the extremity treated with neoadjuvant chemotherapy: 15-year experience in 789 patients treated at a single institution. Cancer 2006; 106: 1154–1161.

    Article  Google Scholar 

Download references

Acknowledgements

We are in debt to Cristina Ghinelli for editing the manuscript and to Anming Meng, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China, for kindly providing the plasmid pCMV5-HA3-ROCK2. This work was supported by the Italian Association for Cancer Research (AIRC; IG10452 to K Scotlandi), the Liddy Shriver Sarcoma Initiative (international grant to K Scotlandi) and Ricerca Fondamentale Orientata (RFO 2010 to C Zucchini). Rosa Simona Pinca is a recipient of a fellowship from the Associazione Onlus ‘il Pensatore: Matteo Amitrano’ and ‘Liberi di Vivere Luca Righi.’

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Scotlandi.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zucchini, C., Manara, M., Pinca, R. et al. CD99 suppresses osteosarcoma cell migration through inhibition of ROCK2 activity. Oncogene 33, 1912–1921 (2014). https://doi.org/10.1038/onc.2013.152

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.152

Keywords

This article is cited by

Search

Quick links