Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

miR-34c may protect lung cancer cells from paclitaxel-induced apoptosis

Abstract

MicroRNAs (miRNAs) constitute a class of small non-coding RNAs that negatively regulate the expression of their target genes. They are involved in many biological processes, including cell proliferation, apoptosis and differentiation, and are considered as promising new therapeutic targets for cancer. However, the identity of miRNAs involved in apoptosis and their respective targets remain largely unknown. Given the elevated complexity of miRNA regulation of gene expression, we performed a functional screening as an alternative strategy to identify those miRNAs that in lung cancer cells may interfere with the apoptotic process. To this aim, we generated a derivative of the non-small cell lung carcinoma A549 cell line in which caspase-8, a critical upstream initiator of apoptosis, can be activated by administration of the small dimerizer drug AP20187. We found a number of miRNAs that may rescue cell viability from caspase-8 activation. They included miRNAs already described as oncogenic such as miR-17, miR-135 and miR-520, but also some miRNAs such as miR-124-1 and miR-34c for which a tumor-suppressive role has instead been described or expected. Among them, miR-34c-5p markedly increased resistance to paclitaxel-induced apoptosis. We demonstrate that Bmf (Bcl-2-modifying factor) is a target of miR-34c-5p, and that its silencing, together with that of c-myc, a known target of miR-34c-5p, contributes to resistance to apoptosis induced by paclitaxel through p53 downregulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Bartel DP . MicroRNAs: target recognition and regulatory functions. Cell 2009; 136: 215–233.

    Article  CAS  Google Scholar 

  2. Farazi TA, Spitzer JI, Morozov P, Tuschl T . miRNAs in human cancer. J Pathol 2011; 223: 102–115.

    Article  CAS  Google Scholar 

  3. Garofalo M, Croce CM . MicroRNAs: master regulators as potential therapeutics in cancer. Annu Rev Pharmacol Toxicol 2011; 51: 25–43.

    Article  CAS  Google Scholar 

  4. Ashkenazi A, Dixit VM . Death receptors: signaling and modulation. Science 1998; 281: 1305–1308.

    Article  CAS  Google Scholar 

  5. Hengartner MO . The biochemistry of apoptosis. Nature 2000; 407: 770–776.

    Article  CAS  Google Scholar 

  6. Inui M, Martello G, Piccolo S . MicroRNA control of signal transduction. Nat Rev Mol Cell Biol 2010; 11: 252–263.

    Article  CAS  Google Scholar 

  7. Chang TC, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH et al. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 2007; 26: 745–752.

    Article  CAS  Google Scholar 

  8. He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y et al. A microRNA component of the p53 tumour suppressor network. Nature 2007; 447: 1130–1134.

    Article  CAS  Google Scholar 

  9. Carlotti F, Zaldumbide A, Martin P, Boulukos KE, Hoeben RC, Pognonec P . Development of an inducible suicide gene system based on human caspase 8. Cancer Gene Ther 2005; 12: 627–639.

    Article  CAS  Google Scholar 

  10. Chang DW, Yang X . Activation of procaspases by FK506 binding protein-mediated oligomerization. Sci STKE 2003; 167: PL1.

    Google Scholar 

  11. Nagel R, le Sage C, Diosdado B, van der Waal M, Oude Vrielink JA, Bolijn A et al. Regulation of the adenomatous polyposis coli gene by the miR-135 family in colorectal cancer. Cancer Res 2008; 68: 5795–5802.

    Article  CAS  Google Scholar 

  12. Huang Q, Gumireddy K, Schrier M, le Sage C, Nagel R, Nair S et al. The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat Cell Biol 2008; 10: 202–210.

    Article  CAS  Google Scholar 

  13. Corney DC, Hwang CI, Matoso A, Vogt M, Flesken-Nikitin A, Godwin AK et al. Frequent downregulation of miR-34 family in human ovarian cancers. Clin Cancer Res 2010; 16: 1119–1128.

    Article  CAS  Google Scholar 

  14. Bommer GT, Gerin I, Feng Y, Kaczorowski AJ, Kuick R, Love RE et al. p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol 2007; 17: 1298–1307.

    Article  CAS  Google Scholar 

  15. He X, He L, Hannon GJ . The guardian's little helper: microRNAs in the p53 tumor suppressor network. Cancer Res 2007; 67: 11099–11101.

    Article  CAS  Google Scholar 

  16. Hermeking H . The miR-34 family in cancer and apoptosis. Cell Death Differ 2010; 17: 193–199.

    Article  CAS  Google Scholar 

  17. Cannell IG, Bushell M . Regulation of Myc by miR-34c: a mechanism to prevent genomic instability? Cell Cycle 2010; 9: 2726–2730.

    Article  CAS  Google Scholar 

  18. van Leeuwen I, Lain S . Sirtuins and p53. Adv Cancer Res 2009; 102: 171–195.

    Article  CAS  Google Scholar 

  19. Chabalier C, Lamare C, Racca C, Privat M, Valette A, Larminat F . BRCA1 downregulation leads to premature inactivation of spindle checkpoint and confers paclitaxel resistance. Cell Cycle 2006; 5: 1001–1007.

    Article  CAS  Google Scholar 

  20. Zachos G, Black EJ, Walker M, Scott MT, Vagnarelli P, Earnshaw WC et al. Chk1 is required for spindle checkpoint function. Dev Cell 2007; 12: 247–260.

    Article  CAS  Google Scholar 

  21. Del Sal G, Murphy M, Ruaro E, Lazarevic D, Levine AJ, Schneider C . Cyclin D1 and p21/waf1 are both involved in p53 growth suppression. Oncogene 1996; 4: 177–185.

    Google Scholar 

  22. Sykes SM, Mellert HS, Holbert MA, Li K, Marmorstein R, Lane WS et al. Acetylation of the p53 DNA-binding domain regulates apoptosis induction. Mol Cell 2006; 24: 841–851.

    Article  CAS  Google Scholar 

  23. Tang Y, Luo J, Zhang W, Gu W . Tip60-dependent acetylation of p53 modulates the decision between cell-cycle arrest and apoptosis. Mol Cell 2006; 24: 827–839.

    Article  CAS  Google Scholar 

  24. Mellert HS, Stanek TJ, Sykes SM, Rauscher III FJ, Schultz DC, McMahon SB . Deacetylation of the DNA-binding domain regulates p53-mediated apoptosis. J Biol Chem 2011; 286: 4264–4270.

    Article  CAS  Google Scholar 

  25. Yamakuchi M, Ferlito M, Lowenstein CJ . miR-34a repression of SIRT1 regulates apoptosis. Proc Natl Acad Sci USA 2008; 105: 13421–13426.

    Article  CAS  Google Scholar 

  26. Guicciardi ME, Gores GJ . Life and death by death receptors. FASEB J 2009; 23: 1625–1637.

    Article  CAS  Google Scholar 

  27. Raver-Shapira N, Marciano E, Meiri E, Spector Y, Rosenfeld N, Moskovits N et al. Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell 2007; 26: 731–743.

    Article  CAS  Google Scholar 

  28. Tarasov V, Jung P, Verdoodt B, Lodygin D, Epanchintsev A, Menssen A et al. Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle 2007; 6: 1586–1593.

    Article  CAS  Google Scholar 

  29. Christoffersen NR, Shalgi R, Frankel LB, Leucci E, Lees M, Klausen M et al. p53-independent upregulation of miR-34a during oncogene-induced senescence represses MYC. Cell Death Differ 2010; 17: 236–245.

    Article  CAS  Google Scholar 

  30. Liu C, Kelnar K, Liu B, Chen X, Calhoun-Davis T, Li H et al. The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med 2011; 17: 211–215.

    Article  CAS  Google Scholar 

  31. Li Y, Guessous F, Zhang Y, Dipierro C, Kefas B, Johnson E et al. MicroRNA-34a inhibits glioblastoma growth by targeting multiple oncogenes. Cancer Res 2009; 69: 7569–7576.

    Article  CAS  Google Scholar 

  32. Dacic S, Kelly L, Shuai Y, Nikiforova MN . miRNA expression profiling of lung adenocarcinomas: correlation with mutational status. Mod Pathol 2010; 23: 1577–1582.

    Article  CAS  Google Scholar 

  33. Lee JH, Voortman J, Dingemans AM, Voeller DM, Pham T, Wang Y et al. MicroRNA expression and clinical outcome of small cell lung cancer. PLoS One 2011; 6: e21300.

    Article  CAS  Google Scholar 

  34. Corney DC, Flesken-Nikitin A, Godwin AK, Wang W, Nikitin AY . MicroRNA-34b and microRNA-34c are targets of p53 and cooperate in control of cell proliferation and adhesion-independent growth. Cancer Res 2007; 67: 8433–8438.

    Article  CAS  Google Scholar 

  35. Allan LA, Clarke PR . Phosphorylation of caspase-9 by CDK1/cyclin B1 protects mitotic cells against apoptosis. Mol Cell 2007; 26: 301–310.

    Article  CAS  Google Scholar 

  36. Schiff PB, Fant J, Horwitz SB . Promotion of microtubule assembly in vitro by taxol. Nature 1979; 277: 665–667.

    Article  CAS  Google Scholar 

  37. Sotillo E, Laver T, Mellert H, Schelter JM, Cleary MA, McMahon S et al. Myc overexpression brings out unexpected antiapoptotic effects of miR-34a. Oncogene 2011; 30: 2587–2594.

    Article  CAS  Google Scholar 

  38. Maclean KH, Keller UB, Rodriguez-Galindo C, Nilsson JA, Cleveland JL . c-Myc augments gamma irradiation-induced apoptosis by suppressing Bcl-XL. Mol Cell Biol 2003; 23: 7256–7270.

    Article  CAS  Google Scholar 

  39. Cannell IG, Kong YW, Johnston SJ, Chen ML, Collins HM, Dobbyn HC et al. p38 MAPK/MK2-mediated induction of miR-34c following DNA damage prevents Myc-dependent DNA replication. Proc Natl Acad Sci USA 2010; 107: 5375–5380.

    Article  CAS  Google Scholar 

  40. Murphy DJ, Junttila MR, Pouyet L, Karnezis A, Shchors K, Bui DA et al. Distinct thresholds govern Myc's biological output in vivo. Cancer Cell 2008; 14: 447–457.

    Article  CAS  Google Scholar 

  41. Soucek L, Evan GI . The ups and downs of Myc biology. Curr Opin Genet Dev 2010; 20: 91–95.

    Article  CAS  Google Scholar 

  42. Allen TD, Zhu CQ, Jones KD, Yanagawa N, Tsao MS, Bishop JM . Interaction between MYC and MCL1 in the genesis and outcome of non-small-cell lung cancer. Cancer Res 2011; 71: 2212–2221.

    Article  CAS  Google Scholar 

  43. Kress TR, Cannell IG, Brenkman AB, Samans B, Gaestel M, Roepman P et al. The MK5/PRAK kinase and Myc form a negative feedback loop that is disrupted during colorectal tumorigenesis. Mol Cell 2011; 41: 445–457.

    Article  CAS  Google Scholar 

  44. Lu W, Lin J, Chen J . Expression of p14ARF overcomes tumor resistance to p53. Cancer Res 2002; 62: 1305–1310.

    CAS  PubMed  Google Scholar 

  45. Yamakuchi M, Lowenstein CJ . MiR-34, SIRT1 and p53: the feedback loop. Cell Cycle 2009; 8: 712–715.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by funds from CNR, AICR No. 11-0075 (LC), an MIUR grant, MERIT RBNE08YFN3_001 (VdF), AIRC No. 4971 (LC) and No. 10620 (GC), and from the Italian Ministry of Economy and Finance to the CNR for the Project FaReBio di Qualità. We thank ARIAD Pharmaceuticals Inc. for providing the AP20187 dimerizer drug and S Soddu for the pLuc-MDM2 expression vector. We also thank Dr Patrick Martin for help with the development of the inducible death vectors; Dr L Baraldi for technical assistance; CL Esposito, S Camorani, I Iaccarino and P Verde for suggestions and comments; and A Pollice for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V de Franciscis.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Catuogno, S., Cerchia, L., Romano, G. et al. miR-34c may protect lung cancer cells from paclitaxel-induced apoptosis. Oncogene 32, 341–351 (2013). https://doi.org/10.1038/onc.2012.51

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.51

Keywords

This article is cited by

Search

Quick links