Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Azacytidine and erlotinib exert synergistic effects against acute myeloid leukemia

Abstract

The term myelodysplastic syndrome (MDS) identifies a heterogeneous group of clonal disorders originating from bone marrow stem cells that often progress to acute myeloid leukemia (AML). The reference treatments for MDS include the DNA methyltransferase inhibitors azacytidine and decitabine. Recently, the epidermal growth factor receptor (EGFR) inhibitor erlotinib has been shown to exert antileukemic activity in vitro and in vivo, independent of the EGFR. Thanks to this feature, erlotinib is currently being tested as an antileukemic drug in clinical trials. Here, we report that azacytidine and erlotinib mediate synergistic antineoplastic effects in several primary or secondary (post-MDS) AML cell lines. The combination of azacytidine and erlotinib blocked cell-cycle progression and induced caspase-dependent apoptosis more consistently than either of the two agents alone. These effects were not a consequence of cellular differentiation and could be discriminated from each other, as the former depended on caspases whereas the latter did not. The synergy between azacitidine and erlotinib, which involved the proteasomal degradation of the anti-apoptotic Bcl-2 family members MCL-1 and BCL2L10 and the upregulation of their pro-apoptotic counterpart PUMA, was abolished when azacytidine was replaced by decitabine but persisted when erlotinib was substituted with gefitinib, another EGFR inhibitor. Of note, the intracellular accumulation of azacytidine was exacerbated by both erlotinib and gefitinib, pointing to a pharmacokinetic mechanism of synergy. In approximately half of the cases studied, marrow and circulating blasts from MDS and AML patients, respectively, exhibited hyperadditive cytotoxic responses to the combination of azacytidine and erlotinib. These results strongly suggest that the combination of azacytidine and erlotinib may exert clinically relevant antileukemic effects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Tefferi A, Skoda R, Vardiman JW . Myeloproliferative neoplasms: contemporary diagnosis using histology and genetics. Nat Rev Clin Oncol 2009; 6: 627–637.

    Article  CAS  Google Scholar 

  2. Fenaux P, Mufti GJ, Hellstrom-Lindberg E, Santini V, Finelli C, Giagounidis A et al. Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study. Lancet Oncol 2009; 10: 223–232.

    Article  CAS  Google Scholar 

  3. Boehrer S, Ades L, Braun T, Galluzzi L, Grosjean J, Fabre C et al. Erlotinib exhibits antineoplastic off-target effects in AML and MDS: a preclinical study. Blood 2008; 111: 2170–2180.

    Article  CAS  Google Scholar 

  4. Boehrer S, Ades L, Galluzzi L, Tajeddine N, Tailler M, Gardin C et al. Erlotinib and gefitinib for the treatment of myelodysplastic syndrome and acute myeloid leukemia: a preclinical comparison. Biochem Pharmacol 2008; 76: 1417–1425.

    Article  CAS  Google Scholar 

  5. Chan G, Pilichowska M . Complete remission in a patient with acute myelogenous leukemia treated with erlotinib for non small-cell lung cancer. Blood 2007; 110: 1079–1080.

    Article  CAS  Google Scholar 

  6. Pitini V, Arrigo C, Altavilla G . Erlotinib in a patient with acute myelogenous leukemia and concomitant non-small-cell lung cancer. J Clin Oncol 2008; 26: 3645–3646.

    Article  Google Scholar 

  7. Stegmaier K, Corsello SM, Ross KN, Wong JS, Deangelo DJ, Golub TR . Gefitinib induces myeloid differentiation of acute myeloid leukemia. Blood 2005; 106: 2841–2848.

    Article  CAS  Google Scholar 

  8. Komrokji RS, Lancet JE, Yu D, Santana E, Yan L, Smith PS et al. Erlotinib for treatment of myelodysplastic syndromes: a phase II clinical study. Blood 2010; 116: Abstract 1854.

  9. Noguchi K, Kawahara H, Kaji A, Katayama K, Mitsuhashi J, Sugimoto Y . Substrate-dependent bidirectional modulation of P-glycoprotein-mediated drug resistance by erlotinib. Cancer Sci 2009; 100: 1701–1707.

    Article  CAS  Google Scholar 

  10. Shi Z, Peng XX, Kim IW, Shukla S, Si QS, Robey RW et al. Erlotinib (Tarceva, OSI-774) antagonizes ATP-binding cassette subfamily B member 1 and ATP-binding cassette subfamily G member 2-mediated drug resistance. Cancer Res 2007; 67: 11012–11020.

    Article  CAS  Google Scholar 

  11. Galluzzi L, Senovilla L, Zitvogel L, Kroemer G . The secret ally: immunostimulation by anticancer drugs. Nat Rev Drug Discov 2012; 11: 215–233.

    Article  CAS  Google Scholar 

  12. Youle RJ, Strasser A . The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 2008; 9: 47–59.

    Article  CAS  Google Scholar 

  13. Kroemer G, Galluzzi L, Brenner C . Mitochondrial membrane permeabilization in cell death. Physiol Rev 2007; 87: 99–163.

    Article  CAS  Google Scholar 

  14. van Stijn A, van der Pol MA, Kok A, Bontje PM, Roemen GM, Beelen RH et al. Differences between the CD34+ and CD34− blast compartments in apoptosis resistance in acute myeloid leukemia. Haematologica 2003; 88: 497–508.

    PubMed  Google Scholar 

  15. Zantl N, Weirich G, Zall H, Seiffert BM, Fischer SF, Kirschnek S et al. Frequent loss of expression of the pro-apoptotic protein Bim in renal cell carcinoma: evidence for contribution to apoptosis resistance. Oncogene 2007; 26: 7038–7048.

    Article  CAS  Google Scholar 

  16. Glaser SP, Lee EF, Trounson E, Bouillet P, Wei A, Fairlie WD et al. Anti-apoptotic Mcl-1 is essential for the development and sustained growth of acute myeloid leukemia. Genes Dev 2012; 26: 120–125.

    Article  CAS  Google Scholar 

  17. Sansonetti A, Bourcier S, Durand L, Chomienne C, Smadja-Joffe F, Robert-Lezenes J . CD44 activation enhances acute monoblastic leukemia cell survival via Mcl-1 upregulation. Leuk Res 2012; 36: 358–362.

    Article  CAS  Google Scholar 

  18. Cluzeau T, Robert G, Mounier N, Karsenti JM, Dufies M, Puissant A et al. BCL2L10 is a predictive factor for resistance to Azacitidine in MDS and AML patients. Oncotarget 2012; 3: 490–501.

    Article  Google Scholar 

  19. Fabiani E, Leone G, Giachelia M, D’Alo F, Greco M, Criscuolo M et al. Analysis of genome-wide methylation and gene expression induced by 5-aza-2′-deoxycytidine identifies BCL2L10 as a frequent methylation target in acute myeloid leukemia. Leuk Lymphoma 2010; 51: 2275–2284.

    Article  CAS  Google Scholar 

  20. Kornblau SM, Womble M, Qiu YH, Jackson CE, Chen W, Konopleva M et al. Simultaneous activation of multiple signal transduction pathways confers poor prognosis in acute myelogenous leukemia. Blood 2006; 108: 2358–2365.

    Article  CAS  Google Scholar 

  21. Scholl C, Gilliland DG, Frohling S . Deregulation of signaling pathways in acute myeloid leukemia. Semin Oncol 2008; 35: 336–345.

    Article  CAS  Google Scholar 

  22. Chapuis N, Tamburini J, Green AS, Vignon C, Bardet V, Neyret A et al. Dual inhibition of PI3K and mTORC1/2 signaling by NVP-BEZ235 as a new therapeutic strategy for acute myeloid leukemia. Clin Cancer Res 2010; 16: 5424–5435.

    Article  CAS  Google Scholar 

  23. Chen LS, Redkar S, Taverna P, Cortes JE, Gandhi V . Mechanisms of cytotoxicity to Pim kinase inhibitor, SGI-1776, in acute myeloid leukemia. Blood 2011; 118: 693–702.

    Article  CAS  Google Scholar 

  24. Eghtedar A, Verstovsek S, Estrov Z, Burger J, Cortes J, Bivins C et al. Phase 2 study of the JAK kinase inhibitor ruxolitinib in patients with refractory leukemias, including postmyeloproliferative neoplasm acute myeloid leukemia. Blood 2012; 119: 4614–4618.

    Article  CAS  Google Scholar 

  25. Huber S, Oelsner M, Decker T, zum Buschenfelde CM, Wagner M, Lutzny G et al. Sorafenib induces cell death in chronic lymphocytic leukemia by translational downregulation of Mcl-1. Leukemia 2011; 25: 838–847.

    Article  CAS  Google Scholar 

  26. Meng XW, Lee SH, Dai H, Loegering D, Yu C, Flatten K et al. Mcl-1 as a buffer for proapoptotic Bcl-2 family members during TRAIL-induced apoptosis: a mechanistic basis for sorafenib (Bay 43-9006)-induced TRAIL sensitization. J Biol Chem 2007; 282: 29831–29846.

    Article  CAS  Google Scholar 

  27. Rahmani M, Davis EM, Bauer C, Dent P, Grant S . Apoptosis induced by the kinase inhibitor BAY 43-9006 in human leukemia cells involves down-regulation of Mcl-1 through inhibition of translation. J Biol Chem 2005; 280: 35217–35227.

    Article  CAS  Google Scholar 

  28. Yu C, Bruzek LM, Meng XW, Gores GJ, Carter CA, Kaufmann SH et al. The role of Mcl-1 downregulation in the proapoptotic activity of the multikinase inhibitor BAY 43-9006. Oncogene 2005; 24: 6861–6869.

    Article  CAS  Google Scholar 

  29. Rahmani M, Aust MM, Attkisson E, Williams DC, Ferreira-Gonzalez A, Grant S . Inhibition of Bcl-2 antiapoptotic members by obatoclax potently enhances sorafenib-induced apoptosis in human myeloid leukemia cells through a Bim-dependent process. Blood 2012; 119: 6089–6098.

    Article  CAS  Google Scholar 

  30. Kimura S, Kuramoto K, Homan J, Naruoka H, Ego T, Nogawa M et al. Antiproliferative and antitumor effects of azacitidine against the human myelodysplastic syndrome cell line SKM-1. Anticancer Res 2012; 32: 795–798.

    CAS  PubMed  Google Scholar 

  31. Chou TC . Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res 2010; 70: 440–446.

    Article  CAS  Google Scholar 

  32. Weisberg E, Ray A, Nelson E, Adamia S, Barrett R, Sattler M et al. Reversible resistance induced by FLT3 inhibition: a novel resistance mechanism in mutant FLT3-expressing cells. PLoS One 2011; 6: e25351.

    Article  CAS  Google Scholar 

  33. Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV et al. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ 2012; 19: 107–120.

    Article  CAS  Google Scholar 

  34. Garrido C, Galluzzi L, Brunet M, Puig PE, Didelot C, Kroemer G . Mechanisms of cytochrome c release from mitochondria. Cell Death Differ 2006; 13: 1423–1433.

    Article  CAS  Google Scholar 

  35. Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH et al. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ 2009; 16: 3–11.

    Article  CAS  Google Scholar 

  36. Jemaa M, Vitale I, Kepp O, Berardinelli F, Galluzzi L, Senovilla L et al. Selective killing of p53-deficient cancer cells by SP600125. EMBO Mol Med 2012; 4: 500–514.

    Article  CAS  Google Scholar 

  37. Galluzzi L, Aaronson SA, Abrams J, Alnemri ES, Andrews DW, Baehrecke EH et al. Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes. Cell Death Differ 2009; 16: 1093–1107.

    Article  CAS  Google Scholar 

  38. Kepp O, Galluzzi L, Lipinski M, Yuan J, Kroemer G . Cell death assays for drug discovery. Nat Rev Drug Discov 2011; 10: 221–237.

    Article  CAS  Google Scholar 

  39. Aimiuwu J, Wang H, Chen P, Xie Z, Wang J, Liu S et al. RNA-dependent inhibition of ribonucleotide reductase is a major pathway for 5-azacytidine activity in acute myeloid leukemia. Blood 2012; 119: 5229–5238.

    Article  CAS  Google Scholar 

  40. Klimek VM, Dolezal EK, Tees MT, Devlin SM, Stein K, Romero A et al. Efficacy of hypomethylating agents in therapy-related myelodysplastic syndromes. Leuk Res 2012; 36: 1093–1097.

    Article  CAS  Google Scholar 

  41. Rosen DB, Cordeiro JA, Cohen A, Lacayo N, Hogge D, Hawtin RE et al. Assessing signaling pathways associated with in vitro resistance to cytotoxic agents in AML. Leuk Res 2012; 36: 900–904.

    Article  CAS  Google Scholar 

  42. Fabre C, Grosjean J, Tailler M, Boehrer S, Ades L, Perfettini JL et al. A novel effect of DNA methyltransferase and histone deacetylase inhibitors: NFkappaB inhibition in malignant myeloblasts. Cell Cycle 2008; 7: 2139–2145.

    Article  CAS  Google Scholar 

  43. Weber C, Schreiber TB, Daub H . Dual phosphoproteomics and chemical proteomics analysis of erlotinib and gefitinib interference in acute myeloid leukemia cells. J Proteomics 2012; 75: 1343–1356.

    Article  CAS  Google Scholar 

  44. Boehrer S, Galluzzi L, Lainey E, Bouteloup C, Tailler M, Harper F et al. Erlotinib antagonizes constitutive activation of SRC family kinases and mTOR in acute myeloid leukemia. Cell Cycle 2011; 10: 3168–3175.

    Article  CAS  Google Scholar 

  45. Galluzzi L, Zamzami N, de La Motte Rouge T, Lemaire C, Brenner C, Kroemer G . Methods for the assessment of mitochondrial membrane permeabilization in apoptosis. Apoptosis 2007; 12: 803–813.

    Article  CAS  Google Scholar 

  46. Galluzzi L, Morselli E, Vitale I, Kepp O, Senovilla L, Criollo A et al. miR-181a and miR-630 regulate cisplatin-induced cancer cell death. Cancer Res 2010; 70: 1793–1803.

    Article  CAS  Google Scholar 

  47. Criollo A, Galluzzi L, Maiuri MC, Tasdemir E, Lavandero S, Kroemer G . Mitochondrial control of cell death induced by hyperosmotic stress. Apoptosis 2007; 12: 3–18.

    Article  CAS  Google Scholar 

  48. de La Motte Rouge T, Galluzzi L, Olaussen KA, Zermati Y, Tasdemir E, Robert T et al. A novel epidermal growth factor receptor inhibitor promotes apoptosis in non-small cell lung cancer cells resistant to erlotinib. Cancer Res 2007; 67: 6253–6262.

    Article  CAS  Google Scholar 

  49. Hoffmann J, Vitale I, Buchmann B, Galluzzi L, Schwede W, Senovilla L et al. Improved cellular pharmacokinetics and pharmacodynamics underlie the wide anticancer activity of sagopilone. Cancer Res 2008; 68: 5301–5308.

    Article  CAS  Google Scholar 

  50. Lainey E, Thepot S, Bouteloup C, Sebert M, Ades L, Tailler M et al. Tyrosine kinase inhibitors for the treatment of acute myeloid leukemia: delineation of anti-leukemic mechanisms of action. Biochem Pharmacol 2011; 82: 1457–1466.

    Article  CAS  Google Scholar 

  51. Lee JJ, Kong M . Confidence intervals of interaction index for assessing multiple drug interaction. Stat Biopharm Res 2009; 1: 4–17.

    Article  Google Scholar 

Download references

Acknowledgements

GK is supported by the Ligue Nationale contre le Cancer (Equipe labellisée), Agence Nationale pour la Recherche (ANR AUTOPH, ANR Emergence), European Commission (ChemoRes, ArtForce), Fondation de France, Institut National du Cancer (INCa), Cancéropôle Ile-de-France, Fondation Bettencourt-Schueller and the LabEx Immuno-Oncology. EL receives a PhD fellowship from Institut National de la Santé et de la recherche Médicale, AW is supported by a fellowship from Association de recherche sur le cancer (ARC) and MS by Fondation de la Recherche Médicale (FRM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Kroemer.

Ethics declarations

Competing interests

The authors declare no conflicts of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lainey, E., Wolfromm, A., Marie, N. et al. Azacytidine and erlotinib exert synergistic effects against acute myeloid leukemia. Oncogene 32, 4331–4342 (2013). https://doi.org/10.1038/onc.2012.469

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.469

Keywords

This article is cited by

Search

Quick links