Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Myosin-interacting guanine exchange factor (MyoGEF) regulates the invasion activity of MDA-MB-231 breast cancer cells through activation of RhoA and RhoC

Abstract

The small guanine triphosphatase (GTPase) proteins RhoA and RhoC are essential for tumor invasion and/or metastasis in breast carcinomas. However, it is poorly understood how RhoA and RhoC are activated in breast cancer cells. Here we describe the role of myosin-interacting guanine nucleotide exchange factor (MyoGEF) in regulating RhoA and RhoC activation as well as cell polarity and invasion in an invasive breast cancer cell line MDA-MB-231. RNA-interference (RNAi)-mediated depletion of MyoGEF in MDA-MB-231 cells not only suppresses the activation of RhoA and RhoC, but also decreases cell polarity and invasion activity. The dominant-negative mutants of RhoA and RhoC, but not Rac1 and Cdc42, dramatically decrease actin polymerization induced by MyoGEF. In addition, MyoGEF colocalizes with nonmuscle myosin IIA (NMIIA) to the front of migrating cells, and depletion of NMIIA by RNAi disrupts the polarized localization of MyoGEF at the cell leading edge, suggesting a role for NMIIA in regulating MyoGEF localization and function. Moreover, MyoGEF protein levels significantly increase in infiltrating ductal carcinomas as well as in invasive breast cancer cell lines. Taken together, our results suggest that MyoGEF cooperates with NMIIA to regulate the polarity and invasion activity of breast cancer cells through activation of RhoA and RhoC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Abe K, Rossman KL, Liu B, Ritola KD, Chiang D, Campbell SL et al. (2000). Vav2 is an activator of Cdc42, Rac1, and RhoA. J Biol Chem 275: 10141–10149.

    Article  CAS  PubMed Central  Google Scholar 

  • Ahram M, Sameni M, Qiu RG, Linebaugh B, Kirn D, Sloane BF . (2000). Rac1-induced endocytosis is associated with intracellular proteolysis during migration through a three-dimensional matrix. Exp Cell Res 260: 292–303.

    Article  CAS  Google Scholar 

  • Arthur WT, Burridge K . (2001). RhoA inactivation by p190RhoGAP regulates cell spreading and migration by promoting membrane protrusion and polarity. Mol Biol Cell 12: 2711–2720.

    Article  CAS  PubMed Central  Google Scholar 

  • Arthur WT, Ellerbroek SM, Der CJ, Burridge K, Wennerberg K . (2002). XPLN, a guanine nucleotide exchange factor for RhoA and RhoB, but not RhoC. J Biol Chem 277: 42964–42972.

    Article  CAS  Google Scholar 

  • Asiedu M, Wu D, Matsumura F, Wei Q . (2008). Phosphorylation of MyoGEF on Thr-574 by Plk1 promotes MyoGEF localization to the central spindle. J Biol Chem 283: 28392–28400.

    Article  CAS  PubMed Central  Google Scholar 

  • Asiedu M, Wu D, Matsumura F, Wei Q . (2009). Centrosome/spindle pole-associated protein regulates cytokinesis via promoting the recruitment of MyoGEF to the central spindle. Mol Biol Cell 20: 1428–1440.

    Article  CAS  PubMed Central  Google Scholar 

  • Betapudi V, Licate LS, Egelhoff TT . (2006). Distinct roles of nonmuscle myosin II isoforms in the regulation of MDA-MB-231 breast cancer cell spreading and migration. Cancer Res 66: 4725–4733.

    Article  CAS  Google Scholar 

  • Bresnick AR . (1999). Molecular mechanisms of nonmuscle myosin-II regulation. Curr Opin Cell Biol 11: 26–33.

    Article  CAS  Google Scholar 

  • Burridge K, Wennerberg K . (2004). Rho and Rac take center stage. Cell 116: 167–179.

    Article  CAS  Google Scholar 

  • Chang F, Peter M . (2002). Cell biology. Formins set the record straight. Science 297: 531–532.

    Article  CAS  Google Scholar 

  • Cheng L, Mahon GM, Kostenko EV, Whitehead IP . (2004). Pleckstrin homology domain-mediated activation of the rho-specific guanine nucleotide exchange factor Dbs by Rac1. J Biol Chem 279: 12786–12793.

    Article  CAS  Google Scholar 

  • Clark EA, Golub TR, Lander ES, Hynes RO . (2000). Genomic analysis of metastasis reveals an essential role for RhoC. Nature 406: 532–535.

    Article  CAS  Google Scholar 

  • Conti MA, Adelstein RS . (2008). Nonmuscle myosin II moves in new directions. J Cell Sci 121: 11–18.

    Article  CAS  Google Scholar 

  • Demou ZN, Awad M, McKee T, Perentes JY, Wang X, Munn LL et al. (2005). Lack of telopeptides in fibrillar collagen I promotes the invasion of a metastatic breast tumor cell line. Cancer Res 65: 5674–5682.

    Article  CAS  Google Scholar 

  • Glaven JA, Whitehead I, Bagrodia S, Kay R, Cerione RA . (1999). The Dbl-related protein, Lfc, localizes to microtubules and mediates the activation of Rac signaling pathways in cells. J Biol Chem 274: 2279–2285.

    Article  CAS  Google Scholar 

  • Golomb E, Ma X, Jana SS, Preston YA, Kawamoto S, Shoham NG et al. (2004). Identification and characterization of nonmuscle myosin II-C, a new member of the myosin II family. J Biol Chem 279: 2800–2808.

    Article  CAS  Google Scholar 

  • Hakem A, Sanchez-Sweatman O, You-Ten A, Duncan G, Wakeham A, Khokha R et al. (2005). RhoC is dispensable for embryogenesis and tumor initiation but essential for metastasis. Genes Dev 19: 1974–1979.

    Article  CAS  PubMed Central  Google Scholar 

  • Higashida C, Miyoshi T, Fujita A, Oceguera-Yanez F, Monypenny J, Andou Y et al. (2004). Actin polymerization-driven molecular movement of mDia1 in living cells. Science 303: 2007–2010.

    Article  CAS  Google Scholar 

  • Jaffe AB, Hall A . (2005). Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol 21: 247–269.

    Article  CAS  PubMed Central  Google Scholar 

  • Kawano Y, Fukata Y, Oshiro N, Amano M, Nakamura T, Ito M et al. (1999). Phosphorylation of myosin-binding subunit (MBS) of myosin phosphatase by Rho-kinase in vivo. J Cell Biol 147: 1023–1038.

    Article  CAS  PubMed Central  Google Scholar 

  • Kimura K, Ito M, Amano M, Chihara K, Fukata Y, Nakafuku M et al. (1996). Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science 273: 245–248.

    Article  CAS  Google Scholar 

  • Kleer CG, Griffith KA, Sabel MS, Gallagher G, van Golen KL, Wu ZF et al. (2005). RhoC-GTPase is a novel tissue biomarker associated with biologically aggressive carcinomas of the breast. Breast Cancer Res Treat 93: 101–110.

    Article  CAS  Google Scholar 

  • Kleer CG, van Golen KL, Zhang Y, Wu ZF, Rubin MA, Merajver SD . (2002). Characterization of RhoC expression in benign and malignant breast disease: a potential new marker for small breast carcinomas with metastatic ability. Am J Pathol 160: 579–584.

    Article  CAS  PubMed Central  Google Scholar 

  • Kleer CG, Zhang Y, Pan Q, Gallagher G, Wu M, Wu ZF et al. (2004). WISP3 and RhoC guanosine triphosphatase cooperate in the development of inflammatory breast cancer. Breast Cancer Res 6: R110–R115.

    Article  Google Scholar 

  • Kolega J . (2006). The role of myosin II motor activity in distributing myosin asymmetrically and coupling protrusive activity to cell translocation. Mol Biol Cell 17: 4435–4445.

    Article  CAS  PubMed Central  Google Scholar 

  • Kozma R, Ahmed S, Best A, Lim L . (1995). The Ras-related protein Cdc42Hs and bradykinin promote formation of peripheral actin microspikes and filopodia in Swiss 3T3 fibroblasts. Mol Cell Biol 15: 1942–1952.

    Article  CAS  PubMed Central  Google Scholar 

  • Kraynov VS, Chamberlain C, Bokoch GM, Schwartz MA, Slabaugh S, Hahn KM . (2000). Localized Rac activation dynamics visualized in living cells. Science 290: 333–337.

    Article  CAS  Google Scholar 

  • Krendel M, Mooseker MS . (2005). Myosins: tails (and heads) of functional diversity. Physiology (Bethesda) 20: 239–251.

    CAS  Google Scholar 

  • Kurokawa K, Matsuda M . (2005). Localized RhoA activation as a requirement for the induction of membrane ruffling. Mol Biol Cell 16: 4294–4303.

    Article  CAS  PubMed Central  Google Scholar 

  • Kurokawa K, Nakamura T, Aoki K, Matsuda M . (2005). Mechanism and role of localized activation of Rho-family GTPases in growth factor-stimulated fibroblasts and neuronal cells. Biochem Soc Trans 33: 631–634.

    Article  CAS  Google Scholar 

  • Kusama T, Mukai M, Tatsuta M, Nakamura H, Inoue M . (2006). Inhibition of transendothelial migration and invasion of human breast cancer cells by preventing geranylgeranylation of Rho. Int J Oncol 29: 217–223.

    CAS  PubMed  Google Scholar 

  • Lauffenburger DA, Horwitz AF . (1996). Cell migration: a physically integrated molecular process. Cell 84: 359–369.

    Article  CAS  Google Scholar 

  • Li F, Higgs HN . (2003). The mouse Formin mDia1 is a potent actin nucleation factor regulated by autoinhibition. Curr Biol 13: 1335–1340.

    Article  CAS  Google Scholar 

  • Liu BP, Burridge K . (2000). Vav2 activates Rac1, Cdc42, and RhoA downstream from growth factor receptors but not beta1 integrins. Mol Cell Biol 20: 7160–7169.

    Article  CAS  PubMed Central  Google Scholar 

  • Lo CM, Buxton DB, Chua GC, Dembo M, Adelstein RS, Wang YL . (2004). Nonmuscle myosin IIb is involved in the guidance of fibroblast migration. Mol Biol Cell 15: 982–989.

    Article  CAS  PubMed Central  Google Scholar 

  • Matsui T, Amano M, Yamamoto T, Chihara K, Nakafuku M, Ito M et al. (1996). Rho-associated kinase, a novel serine/threonine kinase, as a putative target for small GTP binding protein Rho. EMBO J 15: 2208–2216.

    Article  CAS  PubMed Central  Google Scholar 

  • Meshel AS, Wei Q, Adelstein RS, Sheetz MP . (2005). Basic mechanism of three-dimensional collagen fibre transport by fibroblasts. Nat Cell Biol 7: 157–164.

    Article  CAS  Google Scholar 

  • Nalbant P, Hodgson L, Kraynov V, Toutchkine A, Hahn KM . (2004). Activation of endogenous Cdc42 visualized in living cells. Science 305: 1615–1619.

    Article  CAS  Google Scholar 

  • O'Connor KL, Nguyen BK, Mercurio AM . (2000). RhoA function in lamellae formation and migration is regulated by the alpha6beta4 integrin and cAMP metabolism. J Cell Biol 148: 253–258.

    Article  CAS  PubMed Central  Google Scholar 

  • Pertz O, Hodgson L, Klemke RL, Hahn KM . (2006). Spatiotemporal dynamics of RhoA activity in migrating cells. Nature 440: 1069–1072.

    Article  CAS  Google Scholar 

  • Pille JY, Denoyelle C, Varet J, Bertrand JR, Soria J, Opolon P et al. (2005). Anti-RhoA and anti-RhoC siRNAs inhibit the proliferation and invasiveness of MDA-MB-231 breast cancer cells in vitro and in vivo. Mol Ther 11: 267–274.

    Article  CAS  Google Scholar 

  • Pille JY, Li H, Blot E, Bertrand JR, Pritchard LL, Opolon P et al. (2006). Intravenous delivery of anti-RhoA small interfering RNA loaded in nanoparticles of chitosan in mice: safety and efficacy in xenografted aggressive breast cancer. Hum Gene Ther 17: 1019–1026.

    Article  CAS  Google Scholar 

  • Raftopoulou M, Hall A . (2004). Cell migration: Rho GTPases lead the way. Dev Biol 265: 23–32.

    Article  CAS  PubMed Central  Google Scholar 

  • Ridley AJ . (2001). Rho GTPases and cell migration. J Cell Sci 114: 2713–2722.

    CAS  PubMed  Google Scholar 

  • Ridley AJ, Hall A . (1992). The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70: 389–399.

    Article  CAS  Google Scholar 

  • Ridley AJ, Paterson HF, Johnston CL, Diekmann D, Hall A . (1992). The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70: 401–410.

    Article  CAS  PubMed Central  Google Scholar 

  • Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G et al. (2003). Cell migration: integrating signals from front to back. Science 302: 1704–1709.

    Article  CAS  PubMed Central  Google Scholar 

  • Sahai E, Garcia-Medina R, Pouyssegur J, Vial E . (2007). Smurf1 regulates tumor cell plasticity and motility through degradation of RhoA leading to localized inhibition of contractility. J Cell Biol 176: 35–42.

    Article  CAS  PubMed Central  Google Scholar 

  • Sahai E, Marshall CJ . (2003). Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis. Nat Cell Biol 5: 711–719.

    Article  CAS  Google Scholar 

  • Sandquist JC, Swenson KI, Demali KA, Burridge K, Means AR . (2006). Rho kinase differentially regulates phosphorylation of nonmuscle myosin II isoforms A and B during cell rounding and migration. J Biol Chem 281: 35873–35883.

    Article  CAS  Google Scholar 

  • Sastry SK, Rajfur Z, Liu BP, Cote JF, Tremblay ML, Burridge K . (2006). PTP-PEST couples membrane protrusion and tail retraction via VAV2 and p190RhoGAP. J Biol Chem 281: 11627–11636.

    Article  CAS  PubMed Central  Google Scholar 

  • Sellers JR . (2000). Myosins: a diverse superfamily. Biochim Biophys Acta 1496: 3–22.

    Article  CAS  Google Scholar 

  • Simpson KJ, Dugan AS, Mercurio AM . (2004). Functional analysis of the contribution of RhoA and RhoC GTPases to invasive breast carcinoma. Cancer Res 64: 8694–8701.

    Article  CAS  Google Scholar 

  • Tominaga T, Sahai E, Chardin P, McCormick F, Courtneidge SA, Alberts AS . (2000). Diaphanous-related formins bridge Rho GTPase and Src tyrosine kinase signaling. Mol Cell 5: 13–25.

    Article  CAS  Google Scholar 

  • Totsukawa G, Wu Y, Sasaki Y, Hartshorne DJ, Yamakita Y, Yamashiro S et al. (2004). Distinct roles of MLCK and ROCK in the regulation of membrane protrusions and focal adhesion dynamics during cell migration of fibroblasts. J Cell Biol 164: 427–439.

    Article  CAS  PubMed Central  Google Scholar 

  • van Golen KL, Davies S, Wu ZF, Wang Y, Bucana CD, Root H et al. (1999). A novel putative low-affinity insulin-like growth factor-binding protein, LIBC (lost in inflammatory breast cancer), and RhoC GTPase correlate with the inflammatory breast cancer phenotype. Clin Cancer Res 5: 2511–2519.

    CAS  PubMed  Google Scholar 

  • van Golen KL, Wu ZF, Qiao XT, Bao LW, Merajver SD . (2000). RhoC GTPase, a novel transforming oncogene for human mammary epithelial cells that partially recapitulates the inflammatory breast cancer phenotype. Cancer Res 60: 5832–5838.

    CAS  PubMed  Google Scholar 

  • Vicente-Manzanares M, Zareno J, Whitmore L, Choi CK, Horwitz AF . (2007). Regulation of protrusion, adhesion dynamics, and polarity by myosins IIA and IIB in migrating cells. J Cell Biol 176: 573–580.

    Article  CAS  PubMed Central  Google Scholar 

  • Watanabe N, Kato T, Fujita A, Ishizaki T, Narumiya S . (1999). Cooperation between mDia1 and ROCK in Rho-induced actin reorganization. Nat Cell Biol 1: 136–143.

    Article  CAS  Google Scholar 

  • Webb DJ, Parsons JT, Horwitz AF . (2002). Adhesion assembly, disassembly and turnover in migrating cells—over and over and over again. Nat Cell Biol 4: E97–E100.

    Article  CAS  Google Scholar 

  • Wei Q . (2005). Pitx2a binds to human papillomavirus type 18 E6 protein and inhibits E6-mediated P53 degradation in HeLa cells. J Biol Chem 280: 37790–37797.

    Article  CAS  PubMed Central  Google Scholar 

  • Wei Q, Adelstein RS . (2000). Conditional expression of a truncated fragment of nonmuscle myosin II-A alters cell shape but not cytokinesis in HeLa cells. Mol Biol Cell 11: 3617–3627.

    Article  CAS  PubMed Central  Google Scholar 

  • Wells CM, Walmsley M, Ooi S, Tybulewicz V, Ridley AJ . (2004). Rac1-deficient macrophages exhibit defects in cell spreading and membrane ruffling but not migration. J Cell Sci 117: 1259–1268.

    Article  CAS  Google Scholar 

  • Worthylake RA, Burridge K . (2003). RhoA and ROCK promote migration by limiting membrane protrusions. J Biol Chem 278: 13578–13584.

    Article  CAS  Google Scholar 

  • Wu D, Asiedu M, Adelstein RS, Wei Q . (2006). A novel guanine nucleotide exchange factor MyoGEF is required for cytokinesis. Cell Cycle 5: 1234–1239.

    Article  CAS  PubMed Central  Google Scholar 

  • Yamana N, Arakawa Y, Nishino T, Kurokawa K, Tanji M, Itoh RE et al. (2006). The Rho-mDia1 pathway regulates cell polarity and focal adhesion turnover in migrating cells through mobilizing Apc and c-Src. Mol Cell Biol 26: 6844–6858.

    Article  CAS  PubMed Central  Google Scholar 

  • Zigmond SH . (2004). Formin-induced nucleation of actin filaments. Curr Opin Cell Biol 16: 99–105.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Robert S Adelstein and Dr Mary Anne Conti for their critical reading and comments on the manuscript. We thank Dr Keith Burridge (University of North Carolina at Chapel Hill, Chapel Hill, NC, USA) and Dr Rick Cerione (Cornell University, Ithaca, NY, USA) for providing GST-RBD and GST-PBD plasmids. This publication was made possible by National Institutes of Health (NIH) Grant no. P20 RR015563 from the National Center for Research Resources. This work was also supported by NIHGrant k22 HL071542 (to QW), as well as a fund from Terry C. Johnson Center for Basic Cancer Research (to QW). This is contribution 09-136-J from the Kansas Agricultural Experiment Station, Manhattan, KS, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q Wei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, D., Asiedu, M. & Wei, Q. Myosin-interacting guanine exchange factor (MyoGEF) regulates the invasion activity of MDA-MB-231 breast cancer cells through activation of RhoA and RhoC. Oncogene 28, 2219–2230 (2009). https://doi.org/10.1038/onc.2009.96

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.96

Keywords

This article is cited by

Search

Quick links