Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

SOCS-mediated downregulation of mutant Jak2 (V617F, T875N and K539L) counteracts cytokine-independent signaling

Abstract

Recently, mutations in the gene of Janus kinase 2 (Jak2) were discovered in patients suffering from chronic myeloproliferative disorders (MPD) and leukemia. As suppressors of cytokine signaling (SOCS) proteins are potent feedback inhibitors of Jak-mediated signaling, we investigated their role in signal transduction through constitutively active Jak2 mutants. We selected two mutants, Jak2-V617F and Jak2-K539L, found in patients with MPDs and Jak2-T875N identified in acute megakaryoblastic leukemia. We found SOCS family members to be induced through Jak2-V617F in human leukemia cell lines expressing the mutant allele and in stable HEK transfectants inducibly expressing constitutively active Jak2 mutants. SOCS proteins were recruited to the membrane and bound to the constitutively active Jaks. In contrast to wild-type Jak2, the mutant proteins were constitutively ubiquitinated and degraded through the proteasome. Taken together, we show a SOCS-mediated downregulation of the constitutively active, disease-associated mutant Jak2 proteins. Furthermore, a threshold level of mutant Jak expression has to be overcome to allow full cytokine-independent constitutive activation of signaling proteins, which may explain progression to homozygocity in MPDs as well as gene amplification in severe phenotypes and leukemia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 3
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Andrieux JL, Demory JL . (2005). Karyotype and molecular cytogenetic studies in polycythemia vera. Curr Hematol Rep 4: 224–229.

    CAS  PubMed  Google Scholar 

  • Bacher U, Haferlach T, Schoch C . (2005). Gain of 9p due to an unbalanced rearrangement der(9;18): a recurrent clonal abnormality in chronic myeloproliferative disorders. Cancer Genet Cytogenet 160: 179–183.

    Article  CAS  Google Scholar 

  • Baxter EJ, Scott LM, Campbell PJ, East C, Fourouclas N, Swanton S et al. (2005). Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 365: 1054–1061.

    Article  CAS  Google Scholar 

  • Behrmann I, Smyczek T, Heinrich PC, Schmitz-Van de Leur H, Komyod W, Giese B et al. (2004). Janus kinase (Jak) subcellular localization revisited: the exclusive membrane localization of endogenous Janus kinase 1 by cytokine receptor interaction uncovers the Jak.receptor complex to be equivalent to a receptor tyrosine kinase. J Biol Chem 279: 35486–35493.

    Article  CAS  Google Scholar 

  • Bock O, Busche G, Koop C, Schroter S, Buhr T, Kreipe H . (2006). Detection of the single hotspot mutation in the JH2 pseudokinase domain of Janus kinase 2 in bone marrow trephine biopsies derived from chronic myeloproliferative disorders. J Mol Diagn 8: 170–177.

    Article  CAS  Google Scholar 

  • Bock O, Hussein K, Brakensiek K, Buhr T, Schlue J, Wiese B et al. (2007). The suppressor of cytokine signalling-1 (SOCS-1) gene is overexpressed in Philadelphia chromosome negative chronic myeloproliferative disorders. Leuk Res 31: 799–803.

    Article  CAS  Google Scholar 

  • Bumm TG, Elsea C, Corbin AS, Loriaux M, Sherbenou D, Wood L et al. (2006). Characterization of murine JAK2V617F-positive myeloproliferative disease. Cancer Res 66: 11156–11165.

    Article  CAS  Google Scholar 

  • Capello D, Deambrogi C, Rossi D, Lischetti T, Piranda D, Cerri M et al. (2008). Epigenetic inactivation of suppressors of cytokine signalling in Philadelphia-negative chronic myeloproliferative disorders. Br J Haematol 141: 504–511.

    Article  CAS  Google Scholar 

  • De Sepulveda P, Ilangumaran S, Rottapel R . (2000). Suppressor of cytokine signaling-1 inhibits VAV function through protein degradation. J Biol Chem 275: 14005–14008.

    Article  CAS  Google Scholar 

  • Ekmekci CG, Gutierrez MI, Siraj AK, Ozbek U, Bhatia K . (2004). Aberrant methylation of multiple tumor suppressor genes in acute myeloid leukemia. Am J Hematol 77: 233–240.

    Article  CAS  Google Scholar 

  • Endo TA, Masuhara M, Yokouchi M, Suzuki R, Sakamoto H, Mitsui K et al. (1997). A new protein containing an SH2 domain that inhibits JAK kinases. Nature 387: 921–924.

    Article  CAS  Google Scholar 

  • Frantsve J, Schwaller J, Sternberg DW, Kutok J, Gilliland DG . (2001). Socs-1 inhibits TEL-JAK2-mediated transformation of hematopoietic cells through inhibition of JAK2 kinase activity and induction of proteasome-mediated degradation. Mol Cell Biol 21: 3547–3557.

    Article  CAS  Google Scholar 

  • Galm O, Yoshikawa H, Esteller M, Osieka R, Herman JG . (2003). SOCS-1, a negative regulator of cytokine signaling, is frequently silenced by methylation in multiple myeloma. Blood 101: 2784–2788.

    Article  CAS  Google Scholar 

  • Garcon L, Rivat C, James C, Lacout C, Camara-Clayette V, Ugo V et al. (2006). Constitutive activation of STAT5 and Bcl-xL overexpression can induce endogenous erythroid colony formation in human primary cells. Blood 108: 1551–1554.

    Article  CAS  Google Scholar 

  • Grandage VL, Everington T, Linch DC, Khwaja A . (2006). Go6976 is a potent inhibitor of the JAK 2 and FLT3 tyrosine kinases with significant activity in primary acute myeloid leukaemia cells. Br J Haematol 135: 303–316.

    Article  CAS  Google Scholar 

  • Hookham MB, Elliott J, Suessmuth Y, Staerk J, Ward AC, Vainchenker W et al. (2007). The myeloproliferative disorder-associated JAK2 V617F mutant escapes negative regulation by suppressor of cytokine signaling 3. Blood 109: 4924–4929.

    Article  CAS  Google Scholar 

  • James C, Ugo V, Le Couedic JP, Staerk J, Delhommeau F, Lacout C et al. (2005). A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 434: 1144–1148.

    Article  CAS  Google Scholar 

  • Kamizono S, Hanada T, Yasukawa H, Minoguchi S, Kato R, Minoguchi M et al. (2001). The SOCS box of SOCS-1 accelerates ubiquitin-dependent proteolysis of TEL-JAK2. J Biol Chem 276: 12530–12538.

    Article  CAS  Google Scholar 

  • Kralovics R, Passamonti F, Buser AS, Teo SS, Tiedt R, Passweg JR et al. (2005a). A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 352: 1779–1790.

    Article  CAS  Google Scholar 

  • Kralovics R, Teo SS, Buser AS, Brutsche M, Tiedt R, Tichelli A et al. (2005b). Altered gene expression in myeloproliferative disorders correlates with activation of signaling by the V617F mutation of Jak2. Blood 106: 3374–3376.

    Article  CAS  Google Scholar 

  • Kratz CP, Boll S, Kontny U, Schrappe M, Niemeyer CM, Stanulla M . (2006). Mutational screen reveals a novel JAK2 mutation, L611S, in a child with acute lymphoblastic leukemia. Leukemia 20: 381–383.

    Article  CAS  Google Scholar 

  • Lacout C, Pisani DF, Tulliez M, Gachelin FM, Vainchenker W, Villeval JL . (2006). JAK2V617F expression in murine hematopoietic cells leads to MPD mimicking human PV with secondary myelofibrosis. Blood 108: 1652–1660.

    Article  CAS  Google Scholar 

  • Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly BJ et al. (2005). Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 7: 387–397.

    Article  CAS  Google Scholar 

  • Lu X, Huang LJ, Lodish HF . (2008). Dimerization by a cytokine receptor is necessary for constitutive activation of JAK2V617F. J Biol Chem 283: 5258–5266.

    Article  CAS  Google Scholar 

  • Lu X, Levine R, Tong W, Wernig G, Pikman Y, Zarnegar S et al. (2005). Expression of a homodimeric type I cytokine receptor is required for JAK2V617F-mediated transformation. Proc Natl Acad Sci USA 102: 18962–18967.

    Article  CAS  Google Scholar 

  • Melzner I, Bucur AJ, Bruderlein S, Dorsch K, Hasel C, Barth TF et al. (2005). Biallelic mutation of SOCS-1 impairs JAK2 degradation and sustains phospho-JAK2 action in the MedB-1 mediastinal lymphoma line. Blood 105: 2535–2542.

    Article  CAS  Google Scholar 

  • Melzner I, Weniger MA, Bucur AJ, Bruderlein S, Dorsch K, Hasel C et al. (2006). Biallelic deletion within 16p13.13 including SOCS-1 in Karpas1106P mediastinal B-cell lymphoma line is associated with delayed degradation of JAK2 protein. Int J Cancer 118: 1941–1944.

    Article  CAS  Google Scholar 

  • Mercher T, Wernig G, Moore SA, Levine RL, Gu TL, Frohling S et al. (2006). JAK2T875N is a novel activating mutation that results in myeloproliferative disease with features of megakaryoblastic leukemia in a murine bone marrow transplantation model. Blood 108: 2770–2779.

    Article  CAS  Google Scholar 

  • Naka T, Narazaki M, Hirata M, Matsumoto T, Minamoto S, Aono A et al. (1997). Structure and function of a new STAT-induced STAT inhibitor. Nature 387: 924–929.

    Article  CAS  Google Scholar 

  • Quentmeier H, MacLeod RA, Zaborski M, Drexler HG . (2006). JAK2 V617F tyrosine kinase mutation in cell lines derived from myeloproliferative disorders. Leukemia 20: 471–476.

    Article  CAS  Google Scholar 

  • Reilly JT . (2005). Cytogenetic and molecular genetic abnormalities in agnogenic myeloid metaplasia. Semin Oncol 32: 359–364.

    Article  CAS  Google Scholar 

  • Roder S, Steimle C, Meinhardt G, Pahl HL . (2001). STAT3 is constitutively active in some patients with polycythemia rubra vera. Exp Hematol 29: 694–702.

    Article  CAS  Google Scholar 

  • Rui L, Yuan M, Frantz D, Shoelson S, White MF . (2002). SOCS-1 and SOCS-3 block insulin signaling by ubiquitin-mediated degradation of IRS1 and IRS2. J Biol Chem 277: 42394–42398.

    Article  CAS  Google Scholar 

  • Sasaki A, Yasukawa H, Shouda T, Kitamura T, Dikic I, Yoshimura A . (2000). CIS3/SOCS-3 suppresses erythropoietin (EPO) signaling by binding the EPO receptor and JAK2. J Biol Chem 275: 29338–29347.

    Article  CAS  Google Scholar 

  • Sasaki A, Yasukawa H, Suzuki A, Kamizono S, Syoda T, Kinjyo I et al. (1999). Cytokine-inducible SH2 protein-3 (CIS3/SOCS3) inhibits Janus tyrosine kinase by binding through the N-terminal kinase inhibitory region as well as SH2 domain. Genes Cells 4: 339–351.

    Article  CAS  Google Scholar 

  • Schulein R, Hermosilla R, Oksche A, Dehe M, Wiesner B, Krause G et al. (1998). A dileucine sequence and an upstream glutamate residue in the intracellular carboxyl terminus of the vasopressin V2 receptor are essential for cell surface transport in COS.M6 cells. Mol Pharmacol 54: 525–535.

    Article  CAS  Google Scholar 

  • Scott LM, Tong W, Levine RL, Scott MA, Beer PA, Stratton MR et al. (2007). JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med 356: 459–468.

    Article  CAS  Google Scholar 

  • Starr R, Willson TA, Viney EM, Murray LJ, Rayner JR, Jenkins BJ et al. (1997). A family of cytokine-inducible inhibitors of signalling. Nature 387: 917–921.

    Article  CAS  Google Scholar 

  • Tefferi A, Lasho TL, Schwager SM, Strand JS, Elliott M, Mesa R et al. (2006). The clinical phenotype of wild-type, heterozygous, and homozygous JAK2V617F in polycythemia vera. Cancer 106: 631–635.

    Article  CAS  Google Scholar 

  • Teofili L, Martini M, Cenci T, Guidi F, Torti L, Giona F et al. (2008). Epigenetic alteration of SOCS family members is a possible pathogenetic mechanism in JAK2 wild type myeloproliferative diseases. Int J Cancer 123: 1586–1592.

    Article  CAS  Google Scholar 

  • Tiedt R, Hao-Shen H, Sobas MA, Looser R, Dirnhofer S, Schwaller J et al. (2008). Ratio of mutant JAK2-V617F to wild-type Jak2 determines the MPD phenotypes in transgenic mice. Blood 111: 3931–3940.

    Article  CAS  Google Scholar 

  • Ungureanu D, Saharinen P, Junttila I, Hilton DJ, Silvennoinen O . (2002). Regulation of Jak2 through the ubiquitin–proteasome pathway involves phosphorylation of Jak2 on Y1007 and interaction with SOCS-1. Mol Cell Biol 22: 3316–3326.

    Article  CAS  Google Scholar 

  • Vannucchi AM, Antonioli E, Guglielmelli P, Rambaldi A, Barosi G, Marchioli R et al. (2007). Clinical profile of homozygous JAK2 617V>F mutation in patients with polycythemia vera or essential thrombocythemia. Blood 110: 840–846.

    Article  CAS  Google Scholar 

  • Vuong BQ, Arenzana TL, Showalter BM, Losman J, Chen XP, Mostecki J et al. (2004). SOCS-1 localizes to the microtubule organizing complex-associated 20S proteasome. Mol Cell Biol 24: 9092–9101.

    Article  CAS  Google Scholar 

  • Walz C, Crowley BJ, Hudon HE, Gramlich JL, Neuberg DS, Podar K et al. (2006). Activated Jak2 with the V617F point mutation promotes G1/S phase transition. J Biol Chem 281: 18177–18183.

    Article  CAS  Google Scholar 

  • Wernig G, Mercher T, Okabe R, Levine RL, Lee BH, Gilliland DG . (2006). Expression of Jak2V617F causes a polycythemia vera-like disease with associated myelofibrosis in a murine bone marrow transplant model. Blood 107: 4274–4281.

    Article  CAS  Google Scholar 

  • Yasukawa H, Misawa H, Sakamoto H, Masuhara M, Sasaki A, Wakioka T et al. (1999). The JAK-binding protein JAB inhibits Janus tyrosine kinase activity through binding in the activation loop. EMBO J 18: 1309–1320.

    Article  CAS  Google Scholar 

  • Yoshikawa H, Matsubara K, Qian GS, Jackson P, Groopman JD, Manning JE et al. (2001). SOCS-1, a negative regulator of the JAK/STAT pathway, is silenced by methylation in human hepatocellular carcinoma and shows growth-suppression activity. Nat Genet 28: 29–35.

    CAS  PubMed  Google Scholar 

  • Yoshimura A, Ohkubo T, Kiguchi T, Jenkins NA, Gilbert DJ, Copeland NG et al. (1995). A novel cytokine-inducible gene CIS encodes an SH2-containing protein that binds to tyrosine-phosphorylated interleukin 3 and erythropoietin receptors. EMBO J 14: 2816–2826.

    Article  CAS  Google Scholar 

  • Zaleskas VM, Krause DS, Lazarides K, Patel N, Hu Y, Li S et al. (2006). Molecular pathogenesis and therapy of polycythemia induced in mice by JAK2 V617F. PLoS ONE 1: e18.

    Article  Google Scholar 

  • Zhao R, Xing S, Li Z, Fu X, Li Q, Krantz SB et al. (2005). Identification of an acquired JAK2 mutation in polycythemia vera. J Biol Chem 280: 22788–22792.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the UL Grant nos. R1F105L01 and R1F107L01, the Marie Curie Research Training Network ReceptEUR, and by Serono GmbH (Unterschleißheim, Germany).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S Haan or C Haan.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haan, S., Wüller, S., Kaczor, J. et al. SOCS-mediated downregulation of mutant Jak2 (V617F, T875N and K539L) counteracts cytokine-independent signaling. Oncogene 28, 3069–3080 (2009). https://doi.org/10.1038/onc.2009.155

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.155

Keywords

This article is cited by

Search

Quick links