Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Oncogenomics
  • Published:

DNA amplification is a ubiquitous mechanism of oncogene activation in lung and other cancers

Abstract

Chromosomal translocation is the best-characterized genetic mechanism for oncogene activation. However, there are documented examples of activation by alternate mechanisms, for example gene dosage increase, though its prevalence is unclear. Here, we answered the fundamental question of the contribution of DNA amplification as a molecular mechanism driving oncogenesis. Comparing 104 cancer lines representing diverse tissue origins identified genes residing in amplification ‘hotspots’ and discovered an unexpected frequency of genes activated by this mechanism. The 3431 amplicons identified represent 10 per hematological and 36 per epithelial cancer genome. Many recurrently amplified oncogenes were previously known to be activated only by disease-specific translocations. The 135 hotspots identified contain 538 unique genes and are enriched for proliferation, apoptosis and linage-dependency genes, reflecting functions advantageous to tumor growth. Integrating gene dosage with expression data validated the downstream impact of the novel amplification events in both cell lines and clinical samples. For example, multiple downstream components of the EGFR-family-signaling pathway, including CDK5, AKT1 and SHC1, are overexpressed as a direct result of gene amplification in lung cancer. Our findings suggest that amplification is far more common a mechanism of oncogene activation than previously believed and that specific regions of the genome are hotspots of amplification.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  • Albertson DG . (2006). Gene amplification in cancer. Trends Genet 22: 447–455.

    Article  CAS  Google Scholar 

  • Apergis GA, Crawford N, Ghosh D, Steppan CM, Vorachek WR, Wen P et al. (1998). A novel nk-2-related transcription factor associated with human fetal liver and hepatocellular carcinoma. J Biol Chem 273: 2917–2925.

    Article  CAS  Google Scholar 

  • Boersma-Vreugdenhil GR, Kuipers J, Van Stralen E, Peeters T, Michaux L, Hagemeijer A et al. (2004). The recurrent translocation t(14;20)(q32;q12) in multiple myeloma results in aberrant expression of MAFB: a molecular and genetic analysis of the chromosomal breakpoint. Br J Haematol 126: 355–363.

    Article  CAS  Google Scholar 

  • Bublil EM, Yarden Y . (2007). The EGF receptor family: spearheading a merger of signaling and therapeutics. Curr Opin Cell Biol 19: 124–134.

    Article  CAS  Google Scholar 

  • Buttel I, Fechter A, Schwab M . (2004). Common fragile sites and cancer: targeted cloning by insertional mutagenesis. Ann NY Acad Sci 1028: 14–27.

    PubMed  Google Scholar 

  • Chari R, Lockwood WW, Coe BP, Chu A, Macey D, Thomson A et al. (2006). SIGMA: a system for integrative genomic microarray analysis of cancer genomes. BMC Genomics 7: 324.

    Article  Google Scholar 

  • Chi B, DeLeeuw RJ, Coe BP, MacAulay C, Lam WL . (2004). SeeGH—a software tool for visualization of whole genome array comparative genomic hybridization data. BMC Bioinformatics 5: 13.

    Article  Google Scholar 

  • Coe BP, Lockwood WW, Girard L, Chari R, Macaulay C, Lam S et al. (2006). Differential disruption of cell cycle pathways in small cell and non-small cell lung cancer. Br J Cancer 94: 1927–1935.

    Article  CAS  Google Scholar 

  • Coe BP, Ylstra B, Carvalho B, Meijer GA, Macaulay C, Lam WL . (2007). Resolving the resolution of array CGH. Genomics 89: 647–653.

    Article  CAS  Google Scholar 

  • Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO et al. (2007). MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316: 1039–1043.

    Article  CAS  Google Scholar 

  • Fabbro D, Di Loreto C, Stamerra O, Beltrami CA, Lonigro R, Damante G . (1996). TTF-1 gene expression in human lung tumours. Eur J Cancer 32A: 512–517.

    Article  CAS  Google Scholar 

  • Futreal PA, Coin L, Marshall M, Down T, Hubbard T, Wooster R et al. (2004). A census of human cancer genes. Nat Rev Cancer 4: 177–183.

    Article  CAS  Google Scholar 

  • Garnis C, Lockwood WW, Vucic E, Ge Y, Girard L, Minna JD et al. (2006). High resolution analysis of non-small cell lung cancer cell lines by whole genome tiling path array CGH. Int J Cancer 118: 1556–1564.

    Article  CAS  Google Scholar 

  • Garraway LA, Sellers WR . (2006). Lineage dependency and lineage-survival oncogenes in human cancer. Nat Rev Cancer 6: 593–602.

    Article  CAS  Google Scholar 

  • Greshock J, Nathanson K, Martin AM, Zhang L, Coukos G, Weber BL et al. (2007). Cancer cell lines as genetic models of their parent histology: analyses based on array comparative genomic hybridization. Cancer Res 67: 3594–3600.

    Article  CAS  Google Scholar 

  • Heidenblad M, Lindgren D, Veltman JA, Jonson T, Mahlamaki EH, Gorunova L et al. (2005). Microarray analyses reveal strong influence of DNA copy number alterations on the transcriptional patterns in pancreatic cancer: implications for the interpretation of genomic amplifications. Oncogene 24: 1794–1801.

    Article  CAS  Google Scholar 

  • Hellman A, Zlotorynski E, Scherer SW, Cheung J, Vincent JB, Smith DI et al. (2002). A role for common fragile site induction in amplification of human oncogenes. Cancer Cell 1: 89–97.

    Article  CAS  Google Scholar 

  • Hemstrom TH, Sandstrom M, Zhivotovsky B . (2006). Inhibitors of the PI3-kinase/Akt pathway induce mitotic catastrophe in non-small cell lung cancer cells. Int J Cancer 119: 1028–1038.

    Article  Google Scholar 

  • Henderson LJ, Coe BP, Lee EH, Girard L, Gazdar AF, Minna JD et al. (2005). Genomic and gene expression profiling of minute alterations of chromosome arm 1p in small-cell lung carcinoma cells. Br J Cancer 92: 1553–1560.

    Article  CAS  Google Scholar 

  • Hennessy BT, Smith DL, Ram PT, Lu Y, Mills GB . (2005). Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov 4: 988–1004.

    Article  CAS  Google Scholar 

  • Hyman E, Kauraniemi P, Hautaniemi S, Wolf M, Mousses S, Rozenblum E et al. (2002). Impact of DNA amplification on gene expression patterns in breast cancer. Cancer Res 62: 6240–6245.

    CAS  PubMed  Google Scholar 

  • Ishkanian AS, Malloff CA, Watson SK, DeLeeuw RJ, Chi B, Coe BP et al. (2004). A tiling resolution DNA microarray with complete coverage of the human genome. Nat Genet 36: 299–303.

    Article  CAS  Google Scholar 

  • Khojasteh M, Lam WL, Ward RK, MacAulay C . (2005). A stepwise framework for the normalization of array CGH data. BMC Bioinformatics 6: 274.

    Article  Google Scholar 

  • Koizumi F, Shimoyama T, Taguchi F, Saijo N, Nishio K . (2005). Establishment of a human non-small cell lung cancer cell line resistant to gefitinib. Int J Cancer 116: 36–44.

    Article  CAS  Google Scholar 

  • Lockwood WW, Coe BP, Williams AC, MacAulay C, Lam WL . (2007). Whole genome tiling path array CGH analysis of segmental copy number alterations in cervical cancer cell lines. Int J Cancer 120: 436–443.

    Article  CAS  Google Scholar 

  • Mitelman F . (2000). Recurrent chromosome aberrations in cancer. Mutat Res 462: 247–253.

    Article  CAS  Google Scholar 

  • Myllykangas S, Himberg J, Bohling T, Nagy B, Hollmen J, Knuutila S . (2006). DNA copy number amplification profiling of human neoplasms. Oncogene 25: 7324–7332.

    Article  CAS  Google Scholar 

  • Myllykangas S, Knuutila S . (2006). Manifestation, mechanisms and mysteries of gene amplifications. Cancer Lett 232: 79–89.

    Article  CAS  Google Scholar 

  • Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T et al. (2006). A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10: 515–527.

    Article  CAS  Google Scholar 

  • Pierotti MA, Bongarzone I, Borello MG, Greco A, Pilotti S, Sozzi G . (1996). Cytogenetics and molecular genetics of carcinomas arising from thyroid epithelial follicular cells. Genes Chromosomes Cancer 16: 1–14.

    Article  CAS  Google Scholar 

  • Pollack JR, Sorlie T, Perou CM, Rees CA, Jeffrey SS, Lonning PE et al. (2002). Microarray analysis reveals a major direct role of DNA copy number alteration in the transcriptional program of human breast tumors. Proc Natl Acad Sci USA 99: 12963–12968.

    Article  CAS  Google Scholar 

  • Roccato E, Bressan P, Sabatella G, Rumio C, Vizzotto L, Pierotti MA et al. (2005). Proximity of TPR and NTRK1 rearranging loci in human thyrocytes. Cancer Res 65: 2572–2576.

    Article  CAS  Google Scholar 

  • Squire JA, Pei J, Marrano P, Beheshti B, Bayani J, Lim G et al. (2003). High-resolution mapping of amplifications and deletions in pediatric osteosarcoma by use of CGH analysis of cDNA microarrays. Genes Chromosomes Cancer 38: 215–225.

    Article  CAS  Google Scholar 

  • Stenhouse G, Fyfe N, King G, Chapman A, Kerr KM . (2004). Thyroid transcription factor 1 in pulmonary adenocarcinoma. J Clin Pathol 57: 383–387.

    Article  CAS  Google Scholar 

  • Tanaka H, Yanagisawa K, Shinjo K, Taguchi A, Maeno K, Tomida S et al. (2007). Lineage-specific dependency of lung adenocarcinomas on the lung development regulator TTF-1. Cancer Res 67: 6007–6011.

    Article  CAS  Google Scholar 

  • Tonon G, Wong KK, Maulik G, Brennan C, Feng B, Zhang Y et al. (2005). High-resolution genomic profiles of human lung cancer. Proc Natl Acad Sci USA 102: 9625–9630.

    Article  CAS  Google Scholar 

  • Wahl GM, Robert de Saint Vincent B, DeRose ML . (1984). Effect of chromosomal position on amplification of transfected genes in animal cells. Nature 307: 516–520.

    Article  CAS  Google Scholar 

  • Wang PW, Eisenbart JD, Cordes SP, Barsh GS, Stoffel M, Le Beau MM . (1999). Human KRML (MAFB): cDNA cloning, genomic structure, and evaluation as a candidate tumor suppressor gene in myeloid leukemias. Genomics 59: 275–281.

    Article  CAS  Google Scholar 

  • Watson SK, deLeeuw RJ, Horsman DE, Squire JA, Lam WL . (2007). Cytogenetically balanced translocations are associated with focal copy number alterations. Hum Genet 120: 795–805.

    Article  Google Scholar 

  • Watson SK, deLeeuw RJ, Ishkanian AS, Malloff CA, Lam WL . (2004). Methods for high throughput validation of amplified fragment pools of BAC DNA for constructing high resolution CGH arrays. BMC Genomics 5: 6.

    Article  Google Scholar 

  • Weinstein IB . (2002). Cancer. Addiction to oncogenes—the Achilles heal of cancer. Science 297: 63–64.

    Article  CAS  Google Scholar 

  • Wolf M, Mousses S, Hautaniemi S, Karhu R, Huusko P, Allinen M et al. (2004). High-resolution analysis of gene copy number alterations in human prostate cancer using CGH on cDNA microarrays: impact of copy number on gene expression. Neoplasia 6: 240–247.

    Article  CAS  Google Scholar 

  • Zhou BB, Peyton M, He B, Liu C, Girard L, Caudler E et al. (2006). Targeting ADAM-mediated ligand cleavage to inhibit HER3 and EGFR pathways in non-small cell lung cancer. Cancer Cell 10: 39–50.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by funds from CIHR, Genome Canada/BC, Lung Cancer SPORE P50CA70907, DOD VITAL, the Gillson Longenbaugh and Anderson Charitable Foundations as well as scholarships from NSERC, CIHR and MSFHR to WWL, RC and BPC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W W Lockwood.

Additional information

Data deposition: Gene Expression Omnibus, accession number GSE-4824.

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lockwood, W., Chari, R., Coe, B. et al. DNA amplification is a ubiquitous mechanism of oncogene activation in lung and other cancers. Oncogene 27, 4615–4624 (2008). https://doi.org/10.1038/onc.2008.98

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.98

Keywords

This article is cited by

Search

Quick links