Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

TRAIL-mediated signaling in prostate, bladder and renal cancer

Abstract

Tumor necrosis factor related apoptosis inducing ligand (TRAIL) is a death receptor ligand that has the ability to preferentially initiate apoptosis in malignant cells with minimal toxicity to normal cells. TRAIL-based therapeutics, including recombinant TRAIL, TRAIL-receptor agonistic antibodies and TRAIL gene therapy, have now entered clinical trials. Although these therapeutics are promising, concerns regarding TRAIL resistance are causing research efforts to shift towards the identification of effective combination therapies. Small-molecule inhibitors, natural compounds, and drugs approved for treatment of diseases other than cancer have been shown to affect TRAIL receptors, antiapoptotic proteins and survival pathways in prostate, bladder and renal cell lines and in preclinical models. Changes in endogenous TRAIL and TRAIL receptor expression during the development of genitourinary malignancies and the way in which the expression pattern is affected by treatment are of great interest, and understanding the biological consequences of such changes will be important to maximize the potential of TRAIL-based therapeutics.

Key Points

  • Changes in the tumor necrosis factor related apoptosis inducing ligand (TRAIL) signaling pathway have been detected in genitourinary cancers but its exact contribution to cancer development, progression, and treatment responses remains unknown

  • TRAIL signaling seems to be a 'double-edged sword' that can inhibit tumor growth, but can also promote it through nonapoptotic signaling pathways

  • TRAIL signaling could potentially be used to predict outcome and treatment response in genitourinary cancers, and combination therapies targeting TRAIL could drive tumor cells into apoptosis by preventing nonapoptotic TRAIL signaling

  • Small-molecule inhibitors and natural compounds can enhance susceptibility to TRAIL via mechanisms including increased TRAIL receptor expression, decreased expression of antiapoptotic proteins or inhibition of survival pathways

  • Identification of aberrations in TRAIL apoptotic signaling in a specific type, grade, stage, or even an individual tumor will be important for maximal efficacy of combination therapy

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TRAIL-induced apoptosis.
Figure 2: Potential contributions of TRAIL signaling in prostate cancer.
Figure 3: Potential contribution of TRAIL signaling in renal cell carcinoma.

Similar content being viewed by others

References

  1. Pitti, R. M. et al. Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. J. Biol. Chem. 271, 12687–12690 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Wiley, S. R. et al. Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 3, 673–682 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Ashkenazi, A., Holland, P. & Eckhardt, S. G. Ligand-based targeting of apoptosis in cancer: the potential of recombinant human apoptosis ligand 2/Tumor necrosis factor-related apoptosis-inducing ligand (rhApo2L/TRAIL). J. Clin. Oncol. 26, 3621–3630 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Kelley, S. K. et al. Preclinical studies to predict the disposition of Apo2L/tumor necrosis factor-related apoptosis-inducing ligand in humans: characterization of in vivo efficacy, pharmacokinetics, and safety. J. Pharmacol. Exp. Ther. 299, 31–38 (2001).

    CAS  PubMed  Google Scholar 

  5. Griffith, T. S. et al. TRAIL gene therapy: from preclinical development to clinical application. Curr. Gene Ther. 9, 9–19 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bellail, A. C., Qi, L., Mulligan, P., Chhabra, V. & Hao, C. TRAIL agonists on clinical trials for cancer therapy: the promises and the challenges. Rev. Recent Clin. Trials 4, 34–41 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Herbst, R. S. et al. Phase I dose-escalation study of recombinant human Apo2L/TRAIL, a dual proapoptotic receptor agonist, in patients with advanced cancer. J. Clin. Oncol. 28, 2839–2846 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Camidge, D. R. et al. A phase I safety and pharmacokinetic study of the death receptor 5 agonistic antibody PRO95780 in patients with advanced malignancies. Clin. Cancer Res. 16, 1256–1263 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Younes, A. et al. A Phase 1b/2 trial of mapatumumab in patients with relapsed/refractory non-Hodgkin's lymphoma. Br. J. Cancer 103, 1783–1787 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Niyazi, M. et al. Efficacy of triple therapies including ionising radiation, agonistic TRAIL antibodies and cisplatin. Oncol. Rep. 21, 1455–1460 (2009).

    CAS  PubMed  Google Scholar 

  11. Norian, L. A., James, B. R. & Griffith, T. S. Advances in viral vector-based TRAIL gene therapy for cancer. Cancers 3, 603–620 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Newsom-Davis, T., Prieske, S. & Walczak, H. Is TRAIL the holy grail of cancer therapy? Apoptosis 14, 607–623 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Hymowitz, S. G. et al. A unique zinc-binding site revealed by a high-resolution X-ray structure of homotrimeric Apo2L/TRAIL. Biochemistry 39, 633–640 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Marsters, S. A. et al. A novel receptor for Apo2L/TRAIL contains a truncated death domain. Curr. Biol. 7, 1003–1006 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Sheridan, J. P. et al. Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. Science 277, 818–821 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Emery, J. G. et al. Osteoprotegerin is a receptor for the cytotoxic ligand TRAIL. J. Biol. Chem. 273, 14363–14367 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Pennarun, B. et al. Playing the DISC: turning on TRAIL death receptor-mediated apoptosis in cancer. Biochim. Biophys. Acta 1805, 123–140 (2010).

    CAS  PubMed  Google Scholar 

  18. Scaffidi, C. et al. Two CD95 (APO-1/Fas) signaling pathways. EMBO J. 17, 1675–1687 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Garcia-Saez, A. J., Fuertes, G., Suckale, J. & Salgado, J. Permeabilization of the outer mitochondrial membrane by Bcl-2 proteins. Adv. Exp. Med. Biol. 677, 91–105 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Tait, S. W. & Green, D. R. Mitochondria and cell death: outer membrane permeabilization and beyond. Nat. Rev. Mol. Cell Biol. 11, 621–632 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Altieri, D. C. Survivin and IAP proteins in cell-death mechanisms. Biochem. J. 430, 199–205 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Yang, A., Wilson, N. S. & Ashkenazi, A. Proapoptotic DR4 and DR5 signaling in cancer cells: toward clinical translation. Curr. Opin. Cell Biol. 22, 837–844 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Wajant, H. et al. Differential activation of TRAIL-R1 and -2 by soluble and membrane TRAIL allows selective surface antigen-directed activation of TRAIL-R2 by a soluble TRAIL derivative. Oncogene 20, 4101–4106 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Kelley, R. F. et al. Receptor-selective mutants of apoptosis-inducing ligand 2/tumor necrosis factor-related apoptosis-inducing ligand reveal a greater contribution of death receptor (DR) 5 than DR4 to apoptosis signaling. J. Biol. Chem. 280, 2205–2212 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Wilson, N. S. et al. An Fcgamma receptor-dependent mechanism drives antibody-mediated target-receptor signaling in cancer cells. Cancer Cell 19, 101–113 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. MacFarlane, M. et al. Chronic lymphocytic leukemic cells exhibit apoptotic signaling via TRAIL-R1. Cell Death Differ. 12, 773–782 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Falschlehner, C., Schaefer, U. & Walczak, H. Following TRAIL's path in the immune system. Immunology 127, 145–154 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zerafa, N. et al. Cutting edge: TRAIL deficiency accelerates hematological malignancies. J. Immunol. 175, 5586–5590 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Cretney, E. et al. Increased susceptibility to tumor initiation and metastasis in TNF-related apoptosis-inducing ligand-deficient mice. J. Immunol. 168, 1356–1361 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Takeda, K. et al. Critical role for tumor necrosis factor-related apoptosis-inducing ligand in immune surveillance against tumor development. J. Exp. Med. 195, 161–169 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sedger, L. M. et al. Characterization of the in vivo function of TNF-alpha-related apoptosis-inducing ligand, TRAIL/Apo2L, using TRAIL/Apo2L gene-deficient mice. Eur. J. Immunol. 32, 2246–2254 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Seki, N. et al. Tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis is an important endogenous mechanism for resistance to liver metastases in murine renal cancer. Cancer Res. 63, 207–213 (2003).

    CAS  PubMed  Google Scholar 

  33. Park, S. W., Kim, M. S., Lee, J. Y., Yoo, N. J. & Lee, S. H. Mutational analysis of death receptor genes Fas, TRAILR1 and TRAILR2 in prostate carcinomas. APMIS 118, 615–616 (2010).

    CAS  PubMed  Google Scholar 

  34. Langsenlehner, T. et al. The Glu228Ala polymorphism in the ligand binding domain of death receptor 4 is associated with increased risk for prostate cancer metastases. Prostate 68, 264–268 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Koksal, I. T., Sanlioglu, A. D., Karacay, B., Griffith, T. S. & Sanlioglu, S. Tumor necrosis factor-related apoptosis inducing ligand-R4 decoy receptor expression is correlated with high Gleason scores, prostate-specific antigen recurrence, and decreased survival in patients with prostate carcinoma. Urol. Oncol. 26, 158–165 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Anees, M. et al. Recurrence-free survival in prostate cancer is related to increased stromal TRAIL expression. Cancer 117, 1172–1182 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Koksal, I. T., Sanlioglu, A. D., Kutlu, O. & Sanlioglu, S. Effects of androgen ablation therapy in TRAIL death ligand and its receptors expression in advanced prostate cancer. Urol. Int. 84, 445–451 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Raclaw, K. A., Heemers, H. V., Kidd, E. M., Dehm, S. M. & Tindall, D. J. Induction of FLIP expression by androgens protects prostate cancer cells from TRAIL-mediated apoptosis. Prostate 68, 1696–1706 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Thompson, I. et al. Guideline for the management of clinically localized prostate cancer: 2007 update. J. Urol. 177, 2106–2131 (2007).

    Article  PubMed  Google Scholar 

  40. Mottet, N. et al. EAU Guidelines on Prostate Cancer. Part II: Treatment of advanced, relapsing, and castration-resistant prostate cancer. Eur. Urol. 59, 572–583 (2011).

    Article  PubMed  Google Scholar 

  41. Lawton, C. A. et al. Updated results of the phase III Radiation Therapy Oncology Group (RTOG) trial 85-31 evaluating the potential benefit of androgen suppression following standard radiation therapy for unfavorable prognosis carcinoma of the prostate. Int. J. Radiat. Oncol. Biol. Phys. 49, 937–946 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Bolla, M. et al. Long-term results with immediate androgen suppression and external irradiation in patients with locally advanced prostate cancer (an EORTC study): a phase III randomised trial. Lancet 360, 103–106 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Hanks, G. E. et al. Phase III trial of long-term adjuvant androgen deprivation after neoadjuvant hormonal cytoreduction and radiotherapy in locally advanced carcinoma of the prostate: the Radiation Therapy Oncology Group Protocol 92-02. J. Clin. Oncol. 21, 3972–3978 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Shankar, S., Singh, T. R. & Srivastava, R. K. Ionizing radiation enhances the therapeutic potential of TRAIL in prostate cancer in vitro and in vivo: intracellular mechanisms. Prostate 61, 35–49 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Abedinpour, P., Baron, V. T., Welsh, J. & Borgstrom, P. Regression of prostate tumors upon combination of hormone ablation therapy and celecoxib in vivo. Prostate 71, 813–823 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Jemal, A., Siegel, R., Xu, J. & Ward, E. Cancer statistics, 2010. CA Cancer J. Clin. 60, 277–300 (2010).

    Article  PubMed  Google Scholar 

  47. Jacobs, B. L., Lee, C. T. & Montie, J. E. Bladder cancer in 2010: how far have we come? CA Cancer J. Clin. 60, 244–272 (2010).

    Article  PubMed  Google Scholar 

  48. Adams, J., Cuthbert-Heavens, D., Bass, S. & Knowles, M. A. Infrequent mutation of TRAIL receptor 2 (TRAIL-R2/DR5) in transitional cell carcinoma of the bladder with 8p21 loss of heterozygosity. Cancer Lett. 220, 137–144 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Wang, M., Cheng, G., Zhang, Z. & Fu, G. Genetic variants in the death receptor 4 gene contribute to susceptibility to bladder cancer. Mutat. Res. 661, 85–92 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Hazra, A. et al. Death receptor 4 and bladder cancer risk. Cancer Res. 63, 1157–1159 (2003).

    CAS  PubMed  Google Scholar 

  51. Ludwig, A. T. et al. Tumor necrosis factor-related apoptosis-inducing ligand: a novel mechanism for Bacillus Calmette-Guerin-induced antitumor activity. Cancer Res. 64, 3386–3390 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Rosevear, H. M., Lightfoot, A. J., O'Donnell, M. A. & Griffith, T. S. The role of neutrophils and TNF-related apoptosis-inducing ligand (TRAIL) in bacillus Calmette-Guerin (BCG) immunotherapy for urothelial carcinoma of the bladder. Cancer Metastasis Rev. 28, 345–353 (2009).

    Article  PubMed  Google Scholar 

  53. Macher-Goeppinger, S. et al. Prognostic value of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and TRAIL receptors in renal cell cancer. Clin. Cancer Res. 15, 650–659 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Baader, E. et al. Tumor necrosis factor-related apoptosis-inducing ligand-mediated proliferation of tumor cells with receptor-proximal apoptosis defects. Cancer Res. 65, 7888–7895 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Levina, V., Marrangoni, A. M., DeMarco, R., Gorelik, E. & Lokshin, A. E. Multiple effects of TRAIL in human carcinoma cells: induction of apoptosis, senescence, proliferation, and cytokine production. Exp. Cell Res. 314, 1605–1616 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hoogwater, F. J. et al. Oncogenic K-Ras turns death receptors into metastasis-promoting receptors in human and mouse colorectal cancer cells. Gastroenterology 138, 2357–2367 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Gattenlohner, S., Etschmann, B., Riedmiller, H. & Muller-Hermelink, H. K. Lack of KRAS and BRAF mutation in renal cell carcinoma. Eur. Urol. 55, 1490–1491 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Zantl, N. et al. Frequent loss of expression of the pro-apoptotic protein Bim in renal cell carcinoma: evidence for contribution to apoptosis resistance. Oncogene 26, 7038–7048 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Kallio, J. P. et al. Renal cell carcinoma MIB-1, Bax and Bcl-2 expression and prognosis. J. Urol. 172, 2158–2161 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Gobe, G., Rubin, M., Williams, G., Sawczuk, I. & Buttyan, R. Apoptosis and expression of Bcl-2, Bcl-XL, and Bax in renal cell carcinomas. Cancer Invest. 20, 324–332 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Meteoglu, I., Erdogdu, I. H., Meydan, N., Erkus, M. & Barutca, S. NF-KappaB expression correlates with apoptosis and angiogenesis in clear cell renal cell carcinoma tissues. J. Exp. Clin. Cancer Res. 27, 53 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Oya, M. et al. Increased nuclear factor-kappa B activation is related to the tumor development of renal cell carcinoma. Carcinogenesis 24, 377–384 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Trauzold, A. et al. TRAIL promotes metastasis of human pancreatic ductal adenocarcinoma. Oncogene 25, 7434–7439 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Ikeda, T. et al. Dual effects of TRAIL in suppression of autoimmunity: the inhibition of Th1 cells and the promotion of regulatory T cells. J. Immunol. 185, 5259–5267 (2010).

    Article  CAS  PubMed  Google Scholar 

  65. Li, J. F. et al. The prognostic value of peritumoral regulatory T cells and its correlation with intratumoral cyclooxygenase-2 expression in clear cell renal cell carcinoma. BJU Int. 103, 399–405 (2009).

    Article  PubMed  Google Scholar 

  66. Adotevi, O. et al. A decrease of regulatory T cells correlates with overall survival after sunitinib-based anti-angiogenic therapy in metastatic renal cancer patients. J. Immunother. 33, 991–998 (2010).

    Article  CAS  PubMed  Google Scholar 

  67. Desar, I. M. et al. Sorafenib reduces the percentage of tumor infiltrating regulatory T cells in renal cell carcinoma patients. Int. J. Cancer doi:10.1002/ijc.25674.

    Article  CAS  PubMed  Google Scholar 

  68. Wu, X. X. & Kakehi, Y. Enhancement of lexatumumab-induced apoptosis in human solid cancer cells by Cisplatin in caspase-dependent manner. Clin. Cancer Res. 15, 2039–2047 (2009).

    Article  CAS  PubMed  Google Scholar 

  69. Song, J. H., Song, D. K., Herlyn, M., Petruk, K. C. & Hao, C. Cisplatin downregulation of cellular Fas-associated death domain-like interleukin-1beta-converting enzyme-like inhibitory proteins to restore tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in human melanoma cells. Clin. Cancer Res. 9, 4255–4266 (2003).

    CAS  PubMed  Google Scholar 

  70. Mirandola, P. et al. Anticancer agents sensitize osteosarcoma cells to TNF-related apoptosis-inducing ligand downmodulating IAP family proteins. Int. J. Oncol. 28, 127–133 (2006).

    CAS  PubMed  Google Scholar 

  71. Kim, Y. H. & Lee, Y. J. Time sequence of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and cisplatin treatment is responsible for a complex pattern of synergistic cytotoxicity. J. Cell Biochem. 98, 1284–1295 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. White-Gilbertson, S. J. et al. Oxidative stress sensitizes bladder cancer cells to TRAIL mediated apoptosis by downregulating anti-apoptotic proteins. J. Urol. 182, 1178–1185 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wang, S. The promise of cancer therapeutics targeting the TNF-related apoptosis-inducing ligand and TRAIL receptor pathway. Oncogene 27, 6207–6215 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Niemoller, O. & Belka, C. Targeting death-receptors in radiation therapy. Results Probl. Cell Differ. 49, 219–239 (2009).

    Article  CAS  PubMed  Google Scholar 

  75. Shirley, S. & Micheau, O. Targeting c-FLIP in cancer. Cancer Lett. doi:10.1016/j.canlet.2010.10.009.

    Article  CAS  PubMed  Google Scholar 

  76. White-Gilbertson, S., Rubinchik, S. & Voelkel-Johnson, C. Transformation, translation and TRAIL: an unexpected intersection. Cytokine Growth Factor Rev. 19, 167–172 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Jang, J. H., Park, J. S., Lee, T. J. & Kwon, T. K. Transglutaminase 2 expression levels regulate sensitivity to cystamine plus TRAIL-mediated apoptosis. Cancer Lett. 287, 224–230 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Jang, J. H. et al. Compound C sensitizes Caki renal cancer cells to TRAIL-induced apoptosis through reactive oxygen species-mediated downregulation of c-FLIPL and Mcl-1. Exp. Cell Res. 316, 2194–2203 (2010).

    Article  CAS  PubMed  Google Scholar 

  79. Rokhlin, O. W., Guseva, N. V., Taghiyev, A. F., Glover, R. A. & Cohen, M. B. KN-93 inhibits androgen receptor activity and induces cell death irrespective of p53 and Akt status in prostate cancer. Cancer Biol. Ther. 9, 224–235 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Song, J. H., Kandasamy, K. & Kraft, A. S. ABT-737 induces expression of the death receptor 5 and sensitizes human cancer cells to TRAIL-induced apoptosis. J. Biol. Chem. 283, 25003–25013 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Fan, S., Meng, Q., Laterra, J. J. & Rosen, E. M. Scatter factor protects tumor cells against apoptosis caused by TRAIL. Anticancer Drugs 21, 10–24 (2010).

    Article  CAS  PubMed  Google Scholar 

  82. Tang, X., Sun, Y. J., Half, E., Kuo, M. T. & Sinicrope, F. Cyclooxygenase-2 overexpression inhibits death receptor 5 expression and confers resistance to tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in human colon cancer cells. Cancer Res. 62, 4903–4908 (2002).

    CAS  PubMed  Google Scholar 

  83. Chen, Q. et al. Potent antitumor activity in experimental hepatocellular carcinoma by adenovirus-mediated co-expression of TRAIL and shRNA against COX-2. Clin. Cancer Res. 16, 3696–3705 (2010).

    Article  CAS  PubMed  Google Scholar 

  84. Chen, D. J. & Huerta, S. Smac mimetics as new cancer therapeutics. Anticancer Drugs 20, 646–658 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Vince, J. E. et al. IAP antagonists target cIAP1 to induce TNFalpha-dependent apoptosis. Cell 131, 682–693 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Metwalli, A. R. et al. Smac mimetic reverses resistance to TRAIL and chemotherapy in human urothelial cancer cells. Cancer Biol. Ther. 10, 885–892 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Griffith, T. S. et al. Sensitization of human bladder tumor cells to TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis with a small molecule IAP antagonist. Apoptosis 16, 13–26 (2010).

    Article  CAS  Google Scholar 

  88. Dai, Y. et al. A Smac-mimetic sensitizes prostate cancer cells to TRAIL-induced apoptosis via modulating both IAPs and NF-kappaB. BMC Cancer 9, 392 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Yano, K. et al. Chetomin induces degradation of XIAP and enhances TRAIL sensitivity in urogenital cancer cells. Int. J. Oncol. 38, 365–374 (2010).

    PubMed  Google Scholar 

  90. Qiu, J. et al. Potentiation of tumor necrosis factor-alpha-induced tumor cell apoptosis by a small molecule inhibitor for anti-apoptotic protein hPEBP4. J. Biol. Chem. 285, 12241–12247 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Li, H. et al. hPEBP4 resists TRAIL-induced apoptosis of human prostate cancer cells by activating Akt and deactivating ERK1/2 pathways. J. Biol. Chem. 282, 4943–4950 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. Fiory, F., Formisano, P., Perruolo, G. & Beguinot, F. Frontiers: PED/PEA-15, a multifunctional protein controlling cell survival and glucose metabolism. Am. J. Physiol. Endocrinol. Metab. 297, E592–E601 (2009).

    Article  CAS  PubMed  Google Scholar 

  93. Panner, A., James, C. D., Berger, M. S. & Pieper, R. O. mTOR controls FLIPS translation and TRAIL sensitivity in glioblastoma multiforme cells. Mol. Cell Biol. 25, 8809–8823 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Bortul, R. et al. Constitutively active Akt1 protects HL60 leukemia cells from TRAIL-induced apoptosis through a mechanism involving NF-kappaB activation and cFLIP(L) upregulation. Leukemia 17, 379–389 (2003).

    Article  CAS  PubMed  Google Scholar 

  95. Panka, D. J., Mano, T., Suhara, T., Walsh, K. & Mier, J. W. Phosphatidylinositol 3-kinase/Akt activity regulates c-FLIP expression in tumor cells. J. Biol. Chem. 276, 6893–6896 (2001).

    Article  CAS  PubMed  Google Scholar 

  96. Dieterle, A. et al. The Akt inhibitor triciribine sensitizes prostate carcinoma cells to TRAIL-induced apoptosis. Int. J. Cancer 125, 932–941 (2009).

    Article  CAS  PubMed  Google Scholar 

  97. Jacquemin, G., Shirley, S. & Micheau, O. Combining naturally occurring polyphenols with TNF-related apoptosis-inducing ligand: a promising approach to kill resistant cancer cells? Cell. Mol. Life Sci. 67, 3115–3130 (2010).

    Article  CAS  PubMed  Google Scholar 

  98. Ishibashi, M. & Ohtsuki, T. Studies on search for bioactive natural products targeting TRAIL signaling leading to tumor cell apoptosis. Med. Res. Rev. 28, 688–714 (2008).

    Article  CAS  PubMed  Google Scholar 

  99. Szliszka, E. & Krol, W. The role of dietary polyphenols in tumor necrosis factor-related apoptosis inducing ligand (TRAIL)-induced apoptosis for cancer chemoprevention. Eur. J. Cancer Prev. 20, 63–69 (2011).

    Article  CAS  PubMed  Google Scholar 

  100. Ganapathy, S., Chen, Q., Singh, K. P., Shankar, S. & Srivastava, R. K. Resveratrol enhances antitumor activity of TRAIL in prostate cancer xenografts through activation of FOXO transcription factor. PLoS ONE 5, e15627 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Chen, Q., Ganapathy, S., Singh, K. P., Shankar, S. & Srivastava, R. K. Resveratrol induces growth arrest and apoptosis through activation of FOXO transcription factors in prostate cancer cells. PLoS ONE 5, e15288 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Andrzejewski, T. et al. Therapeutic efficacy of curcumin/TRAIL combination regimen for hormone-refractory prostate cancer. Oncol. Res. 17, 257–267 (2008).

    Article  CAS  PubMed  Google Scholar 

  103. Shankar, S., Ganapathy, S., Chen, Q. & Srivastava, R. K. Curcumin sensitizes TRAIL-resistant xenografts: molecular mechanisms of apoptosis, metastasis and angiogenesis. Mol. Cancer 7, 16 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Teiten, M. H., Gaascht, F., Eifes, S., Dicato, M. & Diederich, M. Chemopreventive potential of curcumin in prostate cancer. Genes Nutr. 5, 61–74 (2010).

    Article  CAS  PubMed  Google Scholar 

  105. Kamat, A. M., Tharakan, S. T., Sung, B. & Aggarwal, B. B. Curcumin potentiates the antitumor effects of Bacillus Calmette-Guerin against bladder cancer through the downregulation of NF-kappaB and upregulation of TRAIL receptors. Cancer Res. 69, 8958–8966 (2009).

    Article  CAS  PubMed  Google Scholar 

  106. Plantivaux, A., Szegezdi, E., Samali, A. & Egan, L. Is there a role for nuclear factor kappaB in tumor necrosis factor-related apoptosis-inducing ligand resistance? Ann. NY Acad. Sci. 1171, 38–49 (2009).

    Article  CAS  PubMed  Google Scholar 

  107. Lee, D. H., Rhee, J. G. & Lee, Y. J. Reactive oxygen species upregulate p53 and Puma; a possible mechanism for apoptosis during combined treatment with TRAIL and wogonin. Br. J. Pharmacol. 157, 1189–1202 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Gallenne, T. et al. Bax activation by the BH3-only protein Puma promotes cell dependence on antiapoptotic Bcl-2 family members. J. Cell Biol. 185, 279–290 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Chipuk, J. E. & Green, D. R. PUMA cooperates with direct activator proteins to promote mitochondrial outer membrane permeabilization and apoptosis. Cell Cycle 8, 2692–2696 (2009).

    Article  CAS  PubMed  Google Scholar 

  110. Tang, Y. et al. Flavokawain B, a kava chalcone, induces apoptosis via upregulation of death-receptor 5 and Bim expression in androgen receptor negative, hormonal refractory prostate cancer cell lines and reduces tumor growth. Int. J. Cancer 127, 1758–1768 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Szliszka, E., Czuba, Z. P., Mazur, B., Paradysz, A. & Krol, W. Chalcones and dihydrochalcones augment TRAIL-mediated apoptosis in prostate cancer cells. Molecules 15, 5336–5353 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Chen, Y. C. et al. Cryptocaryone, a natural dihydrochalcone, induces apoptosis in human androgen independent prostate cancer cells by death receptor clustering in lipid raft and nonraft compartments. J. Urol. 183, 2409–2418 (2010).

    Article  CAS  PubMed  Google Scholar 

  113. Min, Y. et al. Death receptor 5-recruited raft components contributes to the sensitivity of Jurkat leukemia cell lines to TRAIL-induced cell death. IUBMB Life 61, 261–267 (2009).

    Article  CAS  PubMed  Google Scholar 

  114. Xu, L. et al. Oxaliplatin enhances TRAIL-induced apoptosis in gastric cancer cells by CBL-regulated death receptor redistribution in lipid rafts. FEBS Lett. 583, 943–948 (2009).

    Article  CAS  PubMed  Google Scholar 

  115. Jung, Y. H., Heo, J., Lee, Y. J., Kwon, T. K. & Kim, Y. H. Quercetin enhances TRAIL-induced apoptosis in prostate cancer cells via increased protein stability of death receptor 5. Life Sci. 86, 351–357 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Szliszka, E. et al. Ethanolic extract of Brazilian green propolis sensitizes prostate cancer cells to TRAIL-induced apoptosis. Int. J. Oncol. 38, 941–953 (2011).

    CAS  PubMed  Google Scholar 

  117. Cavin, C. et al. Cafestol and kahweol, two coffee specific diterpenes with anticarcinogenic activity. Food Chem. Toxicol. 40, 1155–1163 (2002).

    Article  CAS  PubMed  Google Scholar 

  118. Um, H. J. et al. The coffee diterpene kahweol sensitizes TRAIL-induced apoptosis in renal carcinoma Caki cells through downregulation of Bcl-2 and c-FLIP. Chem. Biol. Interact. 186, 36–42 (2010).

    Article  CAS  PubMed  Google Scholar 

  119. Yang, H., Chen, D., Cui, Q. C., Yuan, X. & Dou, Q. P. Celastrol, a triterpene extracted from the Chinese “Thunder of God Vine,” is a potent proteasome inhibitor and suppresses human prostate cancer growth in nude mice. Cancer Res. 66, 4758–4765 (2006).

    Article  CAS  PubMed  Google Scholar 

  120. Sung, B., Park, B., Yadav, V. R. & Aggarwal, B. B. Celastrol, a triterpene, enhances TRAIL-induced apoptosis through the downregulation of cell survival proteins and upregulation of death receptors. J. Biol. Chem. 285, 11498–11507 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Lee, S. J. et al. Berberine sensitizes TRAIL-induced apoptosis through proteasome-mediated downregulation of c-FLIP and Mcl-1 proteins. Int. J. Oncol. 38, 485–492 (2010).

    PubMed  Google Scholar 

  122. Peuhu, E. et al. Inhibition of Akt signaling by the lignan matairesinol sensitizes prostate cancer cells to TRAIL-induced apoptosis. Oncogene 29, 898–908 (2010).

    Article  CAS  PubMed  Google Scholar 

  123. Festuccia, C. et al. Ozarelix, a fourth generation GnRH antagonist, induces apoptosis in hormone refractory androgen receptor negative prostate cancer cells modulating expression and activity of death receptors. Prostate 70, 1340–1349 (2010).

    CAS  PubMed  Google Scholar 

  124. He, Q. et al. Dihydroartemisinin upregulates death receptor 5 expression and cooperates with TRAIL to induce apoptosis in human prostate cancer cells. Cancer Biol. Ther. 9, 819–824 (2010).

    Article  CAS  PubMed  Google Scholar 

  125. Day, C. Thiazolidinediones: a new class of antidiabetic drugs. Diabet. Med. 16, 179–192 (1999).

    Article  CAS  PubMed  Google Scholar 

  126. Lehmann, J. M. et al. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma). J. Biol. Chem. 270, 12953–12956 (1995).

    Article  CAS  PubMed  Google Scholar 

  127. Plissonnier, M. L., Fauconnet, S., Bittard, H. & Lascombe, I. Insights on distinct pathways of thiazolidinediones (PPARgamma ligand)-promoted apoptosis in TRAIL-sensitive or -resistant malignant urothelial cells. Int. J. Cancer 127, 1769–1784 (2010).

    Article  CAS  PubMed  Google Scholar 

  128. Zaman, M. S. et al. The functional significance of microRNA-145 in prostate cancer. Br. J. Cancer 103, 256–264 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Lu, Q. et al. MicroRNA-221 silencing predisposed human bladder cancer cells to undergo apoptosis induced by TRAIL. Urol. Oncol. 28, 635–641 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author would like to thank Dr. Steven J. Savage from the Department of Urology at MUSC for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voelkel-Johnson, C. TRAIL-mediated signaling in prostate, bladder and renal cancer. Nat Rev Urol 8, 417–427 (2011). https://doi.org/10.1038/nrurol.2011.81

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2011.81

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer