Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Specification and connectivity of neuronal subtypes in the sensory lineage

Key Points

  • The nervous system consists of a vast number of different types of neuron. How different types of neuron form and how axons can project over long distances and make highly specific contacts to establish a functional circuit remain largely unknown.

  • We provide an overview of the spatial and temporal sequence of how neuronal diversification emerges in the sensory neuron lineage and how it is genetically coordinated with other developmental processes during the same period of development.

  • We outline the relationship between the gene programmes driving multipotency, neurogenesis and sensory specification and discuss the relation of transcription factors to sensory subtype diversification.

  • This review illustrates how, during development, one transcription factor can coordinate different developmental processes necessary for building a functional circuit.

  • In many parts of the nervous system, neuronal subtypes are produced before precise and unique connection patterns exist. Recent data on the runt-related transcription factor (RUNX) family of transcription factors give an example of how, in a context-dependent manner, RUNX1 and RUNX3 drive key aspects of the establishment of the nociceptive, mechanoreceptive and proprioceptive subclasses of sensory neuron, from identity to modality-specific contact characteristics.

  • RUNX transcription factors act both as transcriptional repressors and activators at different times in development, driving the expression of genes that molecularly and functionally characterize different subtypes of sensory neuron.

  • We also discuss how these transcription factors might be acting cell-autonomously to affect neuronal propensity for axonal growth and susceptibility to cell death.

Abstract

During the development of the nervous system, many different types of neuron are produced. As well as forming the correct type of neuron, each must also establish precise connections. Recent findings show that, because of shared gene programmes, neuronal identity is intimately linked to and coordinated with axonal behaviour. Peripheral sensory neurons provide an excellent system in which to study these interactions. This review examines how neuronal diversity is created in the PNS and describes proteins that help to direct the diversity of neuronal subtypes, cell survival, axonal growth and the establishment of central patterns of modality-specific connections.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Neural crest migration, sensory neurogenesis and the establishment of modality-specific connections.
Figure 2: Three waves of neurogenesis in the sensory neuron lineage.
Figure 3: Genetic cascades that control neurogenesis and subtype specification.
Figure 4: Functions of RUNX proteins in the establishment of central projection.
Figure 5: Graded RUNX activity controls sensory neuron axonal outgrowth.

Similar content being viewed by others

References

  1. Le Douarin, N. M. & Kalcheim, C. The Neural Crest (eds Bard, J., Barlow, P. & Kirk, D.) (Cambridge Univ. Press, Cambridge, 1999).

    Book  Google Scholar 

  2. Basch, M. L., Bronner-Fraser, M. & Garcia-Castro, M. I. Specification of the neural crest occurs during gastrulation and requires Pax7. Nature 441, 218–222 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Garcia-Castro, M. I., Marcelle, C. & Bronner-Fraser, M. Ectodermal Wnt function as a neural crest inducer. Science 297, 848–851 (2002).

    CAS  PubMed  Google Scholar 

  4. Newgreen, D. F. & Gooday, D. Control of the onset of migration of neural crest cells in avian embryos. Role of Ca2+-dependent cell adhesions. Cell Tissue Res. 239, 329–336 (1985).

    Article  CAS  PubMed  Google Scholar 

  5. Nakagawa, S. & Takeichi, M. Neural crest emigration from the neural tube depends on regulated cadherin expression. Development 125, 2963–2971 (1998).

    CAS  PubMed  Google Scholar 

  6. Bronner-Fraser, M., Wolf, J. J. & Murray, B. A. Effects of antibodies against N-cadherin and N-CAM on the cranial neural crest and neural tube. Dev. Biol. 153, 291–301 (1992).

    Article  CAS  PubMed  Google Scholar 

  7. Serbedzija, G. N., Fraser, S. E. & Bronner-Fraser, M. Pathways of trunk neural crest cell migration in the mouse embryo as revealed by vital dye labelling. Development 108, 605–612 (1990).

    CAS  PubMed  Google Scholar 

  8. Frank, E. & Sanes, J. R. Lineage of neurons and glia in chick dorsal root ganglia: analysis in vivo with a recombinant retrovirus. Development 111, 895–908 (1991). The only in vivo clonal analysis of the fate of NCCs, showing the two main waves of sensory neurogenesis in the DRG and their respective progenies.

    CAS  PubMed  Google Scholar 

  9. Bronner-Fraser, M. & Fraser, S. Developmental potential of avian trunk neural crest cells in situ. Neuron 3, 755–766 (1989).

    Article  CAS  PubMed  Google Scholar 

  10. Bronner-Fraser, M. & Fraser, S. E. Cell lineage analysis reveals multipotency of some avian neural crest cells. Nature 335, 161–164 (1988). First in vivo study demonstrating the multipotency of the neural crest.

    Article  CAS  PubMed  Google Scholar 

  11. Kasemeier-Kulesa, J. C., Kulesa, P. M. & Lefcort, F. Imaging neural crest cell dynamics during formation of dorsal root ganglia and sympathetic ganglia. Development 132, 235–245 (2005). A beautiful live-recording study, imaging for the first time the migration and complex dynamics interaction of NCCs.

    Article  CAS  PubMed  Google Scholar 

  12. Ma, Q., Fode, C., Guillemot, F. & Anderson, D. J. Neurogenin1 and neurogenin2 control two distinct waves of neurogenesis in developing dorsal root ganglia. Genes Dev. 13, 1717–1728 (1999). Shows that in the mouse neurogenins control the two first waves of neurogenesis in the DRG.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Maro, G. S. et al. Neural crest boundary cap cells constitute a source of neuronal and glial cells of the PNS. Nature Neurosci. 7, 930–938 (2004). An elegant genetic tracing study showing the third wave of neurogenesis and the contribution of its progeny to the DRG.

    Article  CAS  PubMed  Google Scholar 

  14. Altman, J. & Bayer, S. A. The development of the rat spinal cord. Adv. Anat. Embryol. Cell Biol. 85, 1–164 (1984).

    Article  CAS  PubMed  Google Scholar 

  15. Aquino, J. B. et al. In vitro and in vivo differentiation of boundary cap neural crest stem cells into mature Schwann cells. Exp. Neurol. 198, 438–449 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Hjerling-Leffler, J. et al. The boundary cap: a source of neural crest stem cells that generate multiple sensory neuron subtypes. Development 132, 2623–2632 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Rifkin, J. T., Todd, V. J., Anderson, L. W. & Lefcort, F. Dynamic expression of neurotrophin receptors during sensory neuron genesis and differentiation. Dev. Biol. 227, 465–480 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Montelius, A. et al. Emergence of the sensory nervous system as defined by Foxs1 marking neuronally and sensory committed cells. Differentiation (in the press).

  19. Kim, J., Lo, L., Dormand, E. & Anderson, D. J. SOX10 maintains multipotency and inhibits neuronal differentiation of neural crest stem cells. Neuron 38, 17–31 (2003). First identification of a transcription factor responsible for multipotency maintenance in the neural crest.

    Article  CAS  PubMed  Google Scholar 

  20. Topilko, P. et al. Krox-20 controls myelination in the peripheral nervous system. Nature 371, 796–799 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Perez, S. E., Rebelo, S. & Anderson, D. J. Early specification of sensory neuron fate revealed by expression and function of neurogenins in the chick embryo. Development 126, 1715–1728 (1999).

    CAS  PubMed  Google Scholar 

  22. Anderson, D. J. Lineages and transcription factors in the specification of vertebrate primary sensory neurons. Curr. Opin. Neurobiol. 9, 517–524 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Bertrand, N., Castro, D. S. & Guillemot, F. Proneural genes and the specification of neural cell types. Nature Rev. Neurosci. 3, 517–530 (2002).

    Article  CAS  Google Scholar 

  24. Lo, L., Dormand, E., Greenwood, A. & Anderson, D. J. Comparison of the generic neuronal differentiation and neuron subtype specification functions of mammalian achaete-scute and atonal homologs in cultured neural progenitor cells. Development 129, 1553–1567 (2002).

    CAS  PubMed  Google Scholar 

  25. Zirlinger, M., Lo, L., McMahon, J., McMahon, A. P. & Anderson, D. J. Transient expression of the bHLH factor neurogenin-2 marks a subpopulation of neural crest cells biased for a sensory but not a neuronal fate. Proc. Natl Acad. Sci. USA 99, 8084–8089 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sommer, L., Ma, Q. & Anderson, D. J. neurogenins, a novel family of atonal-related bHLH transcription factors, are putative mammalian neuronal determination genes that reveal progenitor cell heterogeneity in the developing CNS and PNS. Mol. Cell. Neurosci. 8, 221–241 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Ikeya, M., Lee, S. M., Johnson, J. E., McMahon, A. P. & Takada, S. Wnt signalling required for expansion of neural crest and CNS progenitors. Nature 389, 966–970 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Burstyn-Cohen, T., Stanleigh, J., Sela-Donenfeld, D. & Kalcheim, C. Canonical Wnt activity regulates trunk neural crest delamination linking BMP/noggin signaling with G1/S transition. Development 131, 5327–5339 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Hari, L. et al. Lineage-specific requirements of β-catenin in neural crest development. J. Cell Biol. 159, 867–880 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kleber, M. et al. Neural crest stem cell maintenance by combinatorial Wnt and BMP signaling. J. Cell Biol. 169, 309–320 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lee, H. Y. et al. Instructive role of Wnt/β-catenin in sensory fate specification in neural crest stem cells. Science 303, 1020–1023 (2004). Demonstration, using mouse genetics, of the importance of WNT signalling for the generation of NCCs.

    Article  CAS  PubMed  Google Scholar 

  32. Morrison, S. J., White, P. M., Zock, C. & Anderson, D. J. Prospective identification, isolation by flow cytometry, and in vivo self-renewal of multipotent mammalian neural crest stem cells. Cell 96, 737–749 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Shah, N. M., Groves, A. K. & Anderson, D. J. Alternative neural crest cell fates are instructively promoted by TGFβ superfamily members. Cell 85, 331–343 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Shah, N. M. & Anderson, D. J. Integration of multiple instructive cues by neural crest stem cells reveals cell-intrinsic biases in relative growth factor responsiveness. Proc. Natl Acad. Sci. USA 94, 11369–11374 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Reissmann, E. et al. Involvement of bone morphogenetic protein-4 and bone morphogenetic protein-7 in the differentiation of the adrenergic phenotype in developing sympathetic neurons. Development 122, 2079–2088 (1996).

    CAS  PubMed  Google Scholar 

  36. Marmigere, F. et al. The Runx1/AML1 transcription factor selectively regulates development and survival of TrkA nociceptive sensory neurons. Nature Neurosci. 9, 180–187 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Snider, W. D. & McMahon, S. B. Tackling pain at the source: new ideas about nociceptors. Neuron 20, 629–632 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Priestley, J. V., Michael, G. J., Averill, S., Liu, M. & Willmott, N. Regulation of nociceptive neurons by nerve growth factor and glial cell line derived neurotrophic factor. Can. J. Physiol. Pharmacol. 80, 495–505 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Bibel, M. & Barde, Y. A. Neurotrophins: key regulators of cell fate and cell shape in the vertebrate nervous system. Genes Dev. 14, 2919–2937 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Moqrich, A. et al. Expressing TrkC from the TrkA locus causes a subset of dorsal root ganglia neurons to switch fate. Nature Neurosci. 7, 812–818 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Lei, L., Ma, L., Nef, S., Thai, T. & Parada, L. F. mKlf7, a potential transcriptional regulator of TrkA nerve growth factor receptor expression in sensory and sympathetic neurons. Development 128, 1147–1158 (2001).

    CAS  PubMed  Google Scholar 

  42. Lei, L. et al. The zinc finger transcription factor Klf7 is required for TrkA gene expression and development of nociceptive sensory neurons. Genes Dev. 19, 1354–1364 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ma, L., Merenmies, J. & Parada, L. F. Molecular characterization of the TrkA/NGF receptor minimal enhancer reveals regulation by multiple cis elements to drive embryonic neuron expression. Development 127, 3777–3788 (2000).

    CAS  PubMed  Google Scholar 

  44. Ma, L., Lei, L., Eng, S. R., Turner, E. & Parada, L. F. Brn3a regulation of TrkA/NGF receptor expression in developing sensory neurons. Development 130, 3525–3534 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Latchman, D. S. POU family transcription factors in the nervous system. J. Cell Physiol. 179, 126–133 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Huang, E. J. et al. Brn3a is a transcriptional regulator of soma size, target field innervation and axon pathfinding of inner ear sensory neurons. Development 128, 2421–2432 (2001).

    CAS  PubMed  Google Scholar 

  47. Xiang, M. et al. The Brn-3 family of POU-domain factors: primary structure, binding specificity, and expression in subsets of retinal ganglion cells and somatosensory neurons. J. Neurosci. 15, 4762–4785 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fedtsova, N. G. & Turner, E. E. Brn-3.0 expression identifies early post-mitotic CNS neurons and sensory neural precursors. Mech. Dev. 53, 291–304 (1995).

    Article  CAS  PubMed  Google Scholar 

  49. Gerrero, M. R. et al. Brn-3.0: a POU-domain protein expressed in the sensory, immune, and endocrine systems that functions on elements distinct from known octamer motifs. Proc. Natl Acad. Sci. USA 90, 10841–10845 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. McEvilly, R. J. et al. Requirement for Brn-3.0 in differentiation and survival of sensory and motor neurons. Nature 384, 574–577 (1996).

    Article  CAS  PubMed  Google Scholar 

  51. Trieu, M., Rhee, J. M., Fedtsova, N. & Turner, E. E. Autoregulatory sequences are revealed by complex stability screening of the mouse brn-3.0 locus. J. Neurosci. 19, 6549–6558 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Eng, S. R. et al. Defects in sensory axon growth precede neuronal death in Brn3a-deficient mice. J. Neurosci. 21, 541–549 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Trieu, M., Ma, A., Eng, S. R., Fedtsova, N. & Turner, E. E. Direct autoregulation and gene dosage compensation by POU-domain transcription factor Brn3a. Development 130, 111–121 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Huang, E. J. et al. POU domain factor Brn-3a controls the differentiation and survival of trigeminal neurons by regulating Trk receptor expression. Development 126, 2869–2882 (1999).

    CAS  PubMed  Google Scholar 

  55. Xiang, M., Gan, L., Zhou, L., Klein, W. H. & Nathans, J. Targeted deletion of the mouse POU domain gene Brn-3a causes selective loss of neurons in the brainstem and trigeminal ganglion, uncoordinated limb movement, and impaired suckling. Proc. Natl Acad. Sci. USA 93, 11950–11955 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Smith, M. D., Ensor, E. A., Coffin, R. S., Boxer, L. M. & Latchman, D. S. Bcl-2 transcription from the proximal P2 promoter is activated in neuronal cells by the Brn-3a POU family transcription factor. J. Biol. Chem. 273, 16715–16722 (1998).

    Article  CAS  PubMed  Google Scholar 

  57. Smith, M. D. et al. Brn-3a activates the expression of Bcl-xL and promotes neuronal survival in vivo as well as in vitro. Mol. Cell. Neurosci. 17, 460–470 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Sugars, K. L., Budhram-Mahadeo, V., Packham, G. & Latchman, D. S. A minimal Bcl-x promoter is activated by Brn-3a and repressed by p53. Nucleic Acids Res. 29, 4530–4540 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Budhram-Mahadeo, V. et al. p53 suppresses the activation of the Bcl-2 promoter by the Brn-3a POU family transcription factor. J. Biol. Chem. 274, 15237–15244 (1999).

    Article  CAS  PubMed  Google Scholar 

  60. Lei, L., Zhou, J., Lin, L. & Parada, L. F. Brn3a and Klf7 cooperate to control TrkA expression in sensory neurons. Dev. Biol. 5 Dec 2006 (doi: 10.1016/j.ydbio.2006.08.062).

  61. Chen, A. I., de Nooij, J. C. & Jessell, T. M. Graded activity of transcription factor Runx3 specifies the laminar termination pattern of sensory axons in the developing spinal cord. Neuron 49, 395–408 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Chen, C. L. et al. Runx1 determines nociceptive sensory neuron phenotype and is required for thermal and neuropathic pain. Neuron 49, 365–377 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Kramer, I. et al. A role for Runx transcription factor signaling in dorsal root ganglion sensory neuron diversification. Neuron 49, 379–393 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Levanon, D. et al. The Runx3 transcription factor regulates development and survival of TrkC dorsal root ganglia neurons. Embo J. 21, 3454–3463 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Levanon, D. et al. Spatial and temporal expression pattern of Runx3 (Aml2) and Runx1 (Aml1) indicates non-redundant functions during mouse embryogenesis. Mech. Dev. 109, 413–417 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Inoue, K. et al. Runx3 controls the axonal projection of proprioceptive dorsal root ganglion neurons. Nature Neurosci. 5, 946–954 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Inoue, K. et al. Runx3 is essential for the target-specific axon pathfinding of trkc-expressing dorsal root ganglion neurons. Blood Cells Mol. Dis. 30, 157–160 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Theriault, F. M., Roy, P. & Stifani, S. AML1/Runx1 is important for the development of hindbrain cholinergic branchiovisceral motor neurons and selected cranial sensory neurons. Proc. Natl Acad. Sci. USA 101, 10343–10348 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yarmus, M. et al. Groucho/transducin-like Enhancer-of-split (TLE)-dependent and-independent transcriptional regulation by Runx3. Proc. Natl Acad. Sci. USA 103, 7384–7389 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Farinas, I., Wilkinson, G. A., Backus, C., Reichardt, L. F. & Patapoutian, A. Characterization of neurotrophin and Trk receptor functions in developing sensory ganglia: direct NT-3 activation of TrkB neurons in vivo. Neuron 21, 325–334 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kucera, J. & Walro, J. M. Superfluousness of motor innervation for the formation of muscle spindles in neonatal rats. Anat. Embryol. (Berl) 186, 301–309 (1992).

    Article  CAS  Google Scholar 

  72. Ernfors, P., Lee, K. F., Kucera, J. & Jaenisch, R. Lack of neurotrophin-3 leads to deficiencies in the peripheral nervous system and loss of limb proprioceptive afferents. Cell 77, 503–512 (1994). The first study demonstrating the importance of NT3 for limb proprioceptors.

    Article  CAS  PubMed  Google Scholar 

  73. Huang, E. J. & Reichardt, L. F. Neurotrophins: roles in neuronal development and function. Annu. Rev. Neurosci. 24, 677–736 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Molliver, D. C. & Snider, W. D. Nerve growth factor receptor TrkA is down-regulated during postnatal development by a subset of dorsal root ganglion neurons. J. Comp. Neurol. 381, 428–438 (1997).

    Article  CAS  PubMed  Google Scholar 

  75. Molliver, D. C. et al. IB4-binding DRG neurons switch from NGF to GDNF dependence in early postnatal life. Neuron 19, 849–861 (1997).

    Article  CAS  PubMed  Google Scholar 

  76. Fu, S. Y., Sharma, K., Luo, Y., Raper, J. A. & Frank, E. SEMA3A regulates developing sensory projections in the chicken spinal cord. J. Neurobiol. 45, 227–236 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Masuda, T. et al. Differential non-target-derived repulsive signals play a critical role in shaping initial axonal growth of dorsal root ganglion neurons. Dev. Biol. 254, 289–302 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Yaron, A., Huang, P. H., Cheng, H. J. & Tessier-Lavigne, M. Differential requirement for Plexin-A3 and-A4 in mediating responses of sensory and sympathetic neurons to distinct class 3 Semaphorins. Neuron 45, 513–523 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Bron, R., Eickholt, B. J., Vermeren, M., Fragale, N. & Cohen, J. Functional knockdown of neuropilin-1 in the developing chick nervous system by siRNA hairpins phenocopies genetic ablation in the mouse. Dev. Dyn. 230, 299–308 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Gu, C. et al. Neuropilin-1 conveys semaphorin and VEGF signaling during neural and cardiovascular development. Dev. Cell 5, 45–57 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Pasterkamp, R. J., Giger, R. J., Baker, R. E., Hermens, W. T. & Verhaagen, J. Ectopic adenoviral vector-directed expression of Sema3A in organotypic spinal cord explants inhibits growth of primary sensory afferents. Dev. Biol. 220, 129–141 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Nakamoto, K. & Shiga, T. Tissues exhibiting inhibitory and repulsive activities during the initial stages of neurite outgrowth from the dorsal root ganglion in the chick embryo. Dev. Biol. 202, 304–314 (1998).

    Article  CAS  PubMed  Google Scholar 

  83. Keynes, R. et al. Surround repulsion of spinal sensory axons in higher vertebrate embryos. Neuron 18, 889–897 (1997).

    Article  CAS  PubMed  Google Scholar 

  84. Messersmith, E. K. et al. Semaphorin III can function as a selective chemorepellent to pattern sensory projections in the spinal cord. Neuron 14, 949–959 (1995).

    Article  CAS  PubMed  Google Scholar 

  85. Reza, J. N., Gavazzi, I. & Cohen, J. Neuropilin-1 is expressed on adult mammalian dorsal root ganglion neurons and mediates semaphorin3a/collapsin-1-induced growth cone collapse by small diameter sensory afferents. Mol. Cell. Neurosci. 14, 317–326 (1999).

    Article  CAS  PubMed  Google Scholar 

  86. Pond, A., Roche, F. K. & Letourneau, P. C. Temporal regulation of neuropilin-1 expression and sensitivity to semaphorin 3A in NGF- and NT3-responsive chick sensory neurons. J. Neurobiol. 51, 43–53 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Behar, O., Golden, J. A., Mashimo, H., Schoen, F. J. & Fishman, M. C. Semaphorin III is needed for normal patterning and growth of nerves, bones and heart. Nature 383, 525–528 (1996).

    Article  CAS  PubMed  Google Scholar 

  88. Perrin, F. E., Rathjen, F. G. & Stoeckli, E. T. Distinct subpopulations of sensory afferents require F11 or axonin-1 for growth to their target layers within the spinal cord of the chick. Neuron 30, 707–723 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Ernfors, P. Local and target-derived actions of neurotrophins during peripheral nervous system development. Cell Mol. Life Sci. 58, 1036–1044 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. Kucera, J., Fan, G., Jaenisch, R., Linnarsson, S. & Ernfors, P. Dependence of developing group Ia afferents on neurotrophin-3. J. Comp. Neurol. 363, 307–320 (1995).

    Article  CAS  PubMed  Google Scholar 

  91. Ringstedt, T., Kucera, J., Lendahl, U., Ernfors, P. & Ibanez, C. F. Limb proprioceptive deficits without neuronal loss in transgenic mice overexpressing neurotrophin-3 in the developing nervous system. Development 124, 2603–2613 (1997).

    CAS  PubMed  Google Scholar 

  92. Patel, T. D., Jackman, A., Rice, F. L., Kucera, J. & Snider, W. D. Development of sensory neurons in the absence of NGF/TrkA signaling in vivo. Neuron 25, 345–357 (2000).

    Article  CAS  PubMed  Google Scholar 

  93. Patel, T. D. et al. Peripheral NT3 signaling is required for ETS protein expression and central patterning of proprioceptive sensory afferents. Neuron 38, 403–416 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. White, F. A., Keller-Peck, C. R., Knudson, C. M., Korsmeyer, S. J. & Snider, W. D. Widespread elimination of naturally occurring neuronal death in Bax-deficient mice. J. Neurosci. 18, 1428–1439 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Arber, S., Ladle, D. R., Lin, J. H., Frank, E. & Jessell, T. M. ETS gene Er81 controls the formation of functional connections between group Ia sensory afferents and motor neurons. Cell 101, 485–498 (2000).

    Article  CAS  PubMed  Google Scholar 

  96. Sharma, K., Korade, Z. & Frank, E. Development of specific muscle and cutaneous sensory projections in cultured segments of spinal cord. Development 120, 1315–1323 (1994).

    CAS  PubMed  Google Scholar 

  97. Ghysen, A. & Dambly-Chaudiere, C. A genetic programme for neuronal connectivity. Trends Genet. 16, 221–226 (2000).

    Article  CAS  PubMed  Google Scholar 

  98. Gupta, B. P., Flores, G. V., Banerjee, U. & Rodrigues, V. Patterning an epidermal field: Drosophila lozenge, a member of the AML-1/Runt family of transcription factors, specifies olfactory sense organ type in a dose-dependent manner. Dev. Biol. 203, 400–411 (1998).

    Article  CAS  PubMed  Google Scholar 

  99. Canon, J. & Banerjee, U. Runt and Lozenge function in Drosophila development. Semin. Cell Dev. Biol. 11, 327–336 (2000).

    Article  CAS  PubMed  Google Scholar 

  100. Dormand, E. L. & Brand, A. H. Runt determines cell fates in the Drosophila embryonic CNS. Development 125, 1659–1667 (1998).

    CAS  PubMed  Google Scholar 

  101. Kaminker, J. S., Canon, J., Salecker, I. & Banerjee, U. Control of photoreceptor axon target choice by transcriptional repression of Runt. Nature Neurosci. 5, 746–750 (2002).

    Article  CAS  PubMed  Google Scholar 

  102. Tayler, T. D. & Garrity, P. A. Axon targeting in the Drosophila visual system. Curr. Opin. Neurobiol. 13, 90–95 (2003).

    Article  CAS  PubMed  Google Scholar 

  103. Guan, W. & Condic, M. L. Characterization of Netrin-1, Neogenin and cUNC-5H3 expression during chick dorsal root ganglia development. Gene Expr. Patterns 3, 369–373 (2003).

    Article  CAS  PubMed  Google Scholar 

  104. Guan, W., Puthenveedu, M. A. & Condic, M. L. Sensory neuron subtypes have unique substratum preference and receptor expression before target innervation. J. Neurosci. 23, 1781–1791 (2003). First evidence of pre-patterning of peripheral sensory neuronal connectivity in the chick.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Vogel, K. S. & Davies, A. M. The duration of neurotrophic factor independence in early sensory neurons is matched to the time course of target field innervation. Neuron 7, 819–830 (1991).

    Article  CAS  PubMed  Google Scholar 

  106. Davies, A. M., Larmet, Y., Wright, E. & Vogel, K. S. Coordination of trophic interactions by separate developmental programs in sensory neurons and their target fields. J. Cell Sci. Suppl. 15, 111–116 (1991).

    Article  CAS  PubMed  Google Scholar 

  107. Ernfors, P., Merlio, J. P. & Persson, H. Cells expressing mRNA for neurotrophins and their receptors during embryonic rat development. Eur. J. Neurosci. 4, 1140–1158 (1992).

    Article  PubMed  Google Scholar 

  108. Snider, W. D. & Silos-Santiago, I. Dorsal root ganglion neurons require functional neurotrophin receptors for survival during development. Philos. Trans. R Soc. Lond. B Biol. Sci. 351, 395–403 (1996).

    Article  CAS  PubMed  Google Scholar 

  109. Molliver, D. C., Radeke, M. J., Feinstein, S. C. & Snider, W. D. Presence or absence of TrkA protein distinguishes subsets of small sensory neurons with unique cytochemical characteristics and dorsal horn projections. J. Comp. Neurol. 361, 404–416 (1995).

    Article  CAS  PubMed  Google Scholar 

  110. Snider, W. D. & Wright, D. E. Neurotrophins cause a new sensation. Neuron 16, 229–232 (1996).

    Article  CAS  PubMed  Google Scholar 

  111. Airaksinen, M. S. & Meyer, M. Most classes of dorsal root ganglion neurons are severely depleted but not absent in mice lacking neurotrophin-3. Neuroscience 73, 907–911 (1996).

    Article  CAS  PubMed  Google Scholar 

  112. Albers, K. M. et al. Cutaneous overexpression of NT-3 increases sensory and sympathetic neuron number and enhances touch dome and hair follicle innervation. J. Cell Biol. 134, 487–497 (1996).

    Article  CAS  PubMed  Google Scholar 

  113. Ernfors, P., Lee, K. F. & Jaenisch, R. Mice lacking brain-derived neurotrophic factor develop with sensory deficits. Nature 368, 147–150 (1994).

    Article  CAS  PubMed  Google Scholar 

  114. Jones, K. R., Farinas, I., Backus, C. & Reichardt, L. F. Targeted disruption of the BDNF gene perturbs brain and sensory neuron development but not motor neuron development. Cell 76, 989–999 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Liu, X., Ernfors, P., Wu, H. & Jaenisch, R. Sensory but not motor neuron deficits in mice lacking NT4 and BDNF. Nature 375, 238–241 (1995).

    Article  CAS  PubMed  Google Scholar 

  116. Carroll, P., Lewin, G. R., Koltzenburg, M., Toyka, K. V. & Thoenen, H. A role for BDNF in mechanosensation. Nature Neurosci. 1, 42–46 (1998).

    Article  CAS  PubMed  Google Scholar 

  117. Stucky, C. L., DeChiara, T., Lindsay, R. M., Yancopoulos, G. D. & Koltzenburg, M. Neurotrophin 4 is required for the survival of a subclass of hair follicle receptors. J. Neurosci. 18, 7040–7046 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Coffman, J. A. Runx transcription factors and the developmental balance between cell proliferation and differentiation. Cell Biol. Int. 27, 315–324 (2003).

    Article  CAS  PubMed  Google Scholar 

  119. Levanon, D. & Groner, Y. Structure and regulated expression of mammalian RUNX genes. Oncogene 23, 4211–4219 (2004).

    Article  CAS  PubMed  Google Scholar 

  120. Blyth, K., Cameron, E. R. & Neil, J. C. The RUNX genes: gain or loss of function in cancer. Nature Rev. Cancer 5, 376–387 (2005).

    Article  CAS  Google Scholar 

  121. Theriault, F. M. et al. Role for Runx1 in the proliferation and neuronal differentiation of selected progenitor cells in the mammalian nervous system. J. Neurosci. 25, 2050–2061 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Komori, T. Regulation of skeletal development by the Runx family of transcription factors. J. Cell Biochem. 95, 445–453 (2005).

    Article  CAS  PubMed  Google Scholar 

  123. Yoshida, C. A. & Komori, T. Role of Runx proteins in chondrogenesis. Crit. Rev. Eukaryot. Gene Expr. 15, 243–254 (2005).

    Article  CAS  PubMed  Google Scholar 

  124. Raveh, E., Cohen, S., Levanon, D., Groner, Y. & Gat, U. Runx3 is involved in hair shape determination. Dev. Dyn. 233, 1478–1487 (2005).

    Article  CAS  PubMed  Google Scholar 

  125. Li, Q. L. et al. Causal relationship between the loss of RUNX3 expression and gastric cancer. Cell 109, 113–124 (2002).

    Article  CAS  PubMed  Google Scholar 

  126. Lutterbach, B. & Hiebert, S. W. Role of the transcription factor AML-1 in acute leukemia and hematopoietic differentiation. Gene 245, 223–235 (2000).

    Article  CAS  PubMed  Google Scholar 

  127. Levanon, D. et al. Architecture and anatomy of the genomic locus encoding the human leukemia-associated transcription factor RUNX1/AML1. Gene 262, 23–33 (2001).

    Article  CAS  PubMed  Google Scholar 

  128. Pozner, A. et al. Transcription-coupled translation control of AML1/RUNX1 is mediated by cap- and internal ribosome entry site-dependent mechanisms. Mol. Cell Biol. 20, 2297–2307 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Ghozi, M. C., Bernstein, Y., Negreanu, V., Levanon, D. & Groner, Y. Expression of the human acute myeloid leukemia gene AML1 is regulated by two promoter regions. Proc. Natl Acad. Sci. USA 93, 1935–1940 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Bangsow, C. et al. The RUNX3 gene — sequence, structure and regulated expression. Gene 279, 221–232 (2001).

    Article  CAS  PubMed  Google Scholar 

  131. Stewart, M. et al. Proviral insertions induce the expression of bone-specific isoforms of PEBP2αA (CBFA1): evidence for a new myc collaborating oncogene. Proc. Natl Acad. Sci. USA 94, 8646–8651 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Levanon, D. et al. A large variety of alternatively spliced and differentially expressed mRNAs are encoded by the human acute myeloid leukemia gene AML1. DNA Cell Biol. 15, 175–185 (1996).

    Article  CAS  PubMed  Google Scholar 

  133. Zhang, Y. W. et al. A novel transcript encoding an N-terminally truncated AML1/PEBP2 αB protein interferes with transactivation and blocks granulocytic differentiation of 32Dcl3 myeloid cells. Mol. Cell. Biol. 17, 4133–4145 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Miyoshi, H. et al. Alternative splicing and genomic structure of the AML1 gene involved in acute myeloid leukemia. Nucleic Acids Res. 23, 2762–2769 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Fisher, A. L. & Caudy, M. Groucho proteins: transcriptional corepressors for specific subsets of DNA-binding transcription factors in vertebrates and invertebrates. Genes Dev. 12, 1931–1940 (1998).

    Article  CAS  PubMed  Google Scholar 

  136. Levanon, D. et al. Transcriptional repression by AML1 and LEF-1 is mediated by the TLE/Groucho corepressors. Proc. Natl Acad. Sci. USA 95, 11590–11595 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Aziz-Aloya, R. B. et al. Expression of AML1-d, a short human AML1 isoform, in embryonic stem cells suppresses in vivo tumor growth and differentiation. Cell Death Differ. 5, 765–773 (1998).

    Article  CAS  PubMed  Google Scholar 

  138. Ito, Y. Molecular basis of tissue-specific gene expression mediated by the runt domain transcription factor PEBP2/CBF. Genes Cells 4, 685–696 (1999).

    Article  CAS  PubMed  Google Scholar 

  139. Tanaka, T. et al. An acute myeloid leukemia gene, AML1, regulates hemopoietic myeloid cell differentiation and transcriptional activation antagonistically by two alternative spliced forms. Embo J. 14, 341–350 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Lee, K. S., Hong, S. H. & Bae, S. C. Both the Smad and p38 MAPK pathways play a crucial role in Runx2 expression following induction by transforming growth factor-β and bone morphogenetic protein. Oncogene 21, 7156–7163 (2002).

    Article  CAS  PubMed  Google Scholar 

  141. Liu, B. et al. Disruption of Smad5 gene leads to enhanced proliferation of high-proliferative potential precursors during embryonic hematopoiesis. Blood 101, 124–133 (2003).

    Article  CAS  PubMed  Google Scholar 

  142. Jin, Y. H. et al. Transforming growth factor-β stimulates p300-dependent RUNX3 acetylation, which inhibits ubiquitination-mediated degradation. J. Biol. Chem. 279, 29409–29417 (2004).

    Article  CAS  PubMed  Google Scholar 

  143. Zhou, Y. X. et al. A Pro250Arg substitution in mouse Fgfr1 causes increased expression of Cbfa1 and premature fusion of calvarial sutures. Hum. Mol. Genet. 9, 2001–2008 (2000).

    Article  CAS  PubMed  Google Scholar 

  144. Nibu, K., Li, G., Kaga, K. & Rothstein, J. L. bFGF induces differentiation and death of olfactory neuroblastoma cells. Biochem. Biophys. Res. Commun. 279, 172–180 (2000).

    Article  CAS  PubMed  Google Scholar 

  145. D'Souza, R. N. et al. Cbfa1 is required for epithelial–mesenchymal interactions regulating tooth development in mice. Development 126, 2911–2920 (1999).

    CAS  PubMed  Google Scholar 

  146. Sun, L., Vitolo, M. & Passaniti, A. Runt-related gene 2 in endothelial cells: inducible expression and specific regulation of cell migration and invasion. Cancer Res. 61, 4994–5001 (2001).

    CAS  PubMed  Google Scholar 

  147. Gilbert, L. et al. Expression of the osteoblast differentiation factor RUNX2 (Cbfa1/AML3/Pebp2α A) is inhibited by tumor necrosis factor-α. J. Biol. Chem. 277, 2695–2701 (2002).

    Article  CAS  PubMed  Google Scholar 

  148. Jimenez, M. J. et al. A regulatory cascade involving retinoic acid, Cbfa1, and matrix metalloproteinases is coupled to the development of a process of perichondrial invasion and osteogenic differentiation during bone formation. J. Cell Biol. 155, 1333–1344 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Le, X. F. et al. Regulation of AML2/CBFA3 in hematopoietic cells through the retinoic acid receptor α-dependent signaling pathway. J. Biol. Chem. 274, 21651–21658 (1999).

    Article  CAS  PubMed  Google Scholar 

  150. Spinella-Jaegle, S. et al. Sonic hedgehog increases the commitment of pluripotent mesenchymal cells into the osteoblastic lineage and abolishes adipocytic differentiation. J. Cell Sci. 114, 2085–2094 (2001).

    CAS  PubMed  Google Scholar 

  151. Gaur, T. et al. Canonical WNT signaling promotes osteogenesis by directly stimulating Runx2 gene expression. J. Biol. Chem. 280, 33132–33140 (2005).

    Article  CAS  PubMed  Google Scholar 

  152. Afzal, F. et al. Smad function and intranuclear targeting share a Runx2 motif required for osteogenic lineage induction and BMP2 responsive transcription. J. Cell Physiol. 204, 63–72 (2005).

    Article  CAS  PubMed  Google Scholar 

  153. Ito, Y. & Miyazono, K. RUNX transcription factors as key targets of TGF-β superfamily signaling. Curr. Opin. Genet. Dev. 13, 43–47 (2003).

    Article  CAS  PubMed  Google Scholar 

  154. Fainaru, O. et al. Runx3 regulates mouse TGF-βn-mediated dendritic cell function and its absence results in airway inflammation. Embo J. 23, 969–979 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Hanai, J. et al. Interaction and functional cooperation of PEBP2/CBF with Smads. Synergistic induction of the immunoglobulin germline Cα promoter. J. Biol. Chem. 274, 31577–31582 (1999).

    Article  CAS  PubMed  Google Scholar 

  156. Selvamurugan, N., Kwok, S. & Partridge, N. C. Smad3 interacts with JunB and Cbfa1/Runx2 for transforming growth factor-β1-stimulated collagenase-3 expression in human breast cancer cells. J. Biol. Chem. 279, 27764–27773 (2004).

    Article  CAS  PubMed  Google Scholar 

  157. Aho, T. L., Sandholm, J., Peltola, K. J., Ito, Y. & Koskinen, P. J. Pim-1 kinase phosphorylates RUNX family transcription factors and enhances their activity. BMC Cell Biol. 7, 21 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Bae, S. C. & Lee, Y. H. Phosphorylation, acetylation and ubiquitination: the molecular basis of RUNX regulation. Gene 366, 58–66 (2006).

    Article  CAS  PubMed  Google Scholar 

  159. Wee, H. J., Huang, G., Shigesada, K. & Ito, Y. Serine phosphorylation of RUNX2 with novel potential functions as negative regulatory mechanisms. EMBO Rep. 3, 967–974 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Yamaguchi, Y. et al. AML1 is functionally regulated through p300-mediated acetylation on specific lysine residues. J. Biol. Chem. 279, 15630–15638 (2004).

    Article  CAS  PubMed  Google Scholar 

  161. Franceschi, R. T. & Xiao, G. Regulation of the osteoblast-specific transcription factor, Runx2: responsiveness to multiple signal transduction pathways. J. Cell Biochem. 88, 446–454 (2003).

    Article  CAS  PubMed  Google Scholar 

  162. Hunt, S. P. & Mantyh, P. W. The molecular dynamics of pain control. Nature Rev. Neurosci. 2, 83–91 (2001).

    Article  CAS  Google Scholar 

  163. Zylka, M. J. Nonpeptidergic circuits feel your pain. Neuron 47, 771–772 (2005).

    Article  CAS  PubMed  Google Scholar 

  164. Zylka, M. J., Rice, F. L. & Anderson, D. J. Topographically distinct epidermal nociceptive circuits revealed by axonal tracers targeted to Mrgprd. Neuron 45, 17–25 (2005).

    Article  CAS  PubMed  Google Scholar 

  165. Stucky, C. L. & Lewin, G. R. Isolectin B4-positive and-negative nociceptors are functionally distinct. J. Neurosci. 19, 6497–6505 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Swedish Medical Research Council and the Swedish foundation for strategic research (CEDB grant). We thank J. Hjerling-Leffler for help with the design of figure 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrik Ernfors.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Patrick Ernfors's homepage

Glossary

Neurotrophic tyrosine receptor kinases

(Trks). Trk receptors are high-affinity tyrosine kinase receptors for the neurotrophins, with TrkA mainly activated by nerve growth factor, TrkB by brain-derived neurotrophic factor and neurotrophin 4 (NT4), and TrkC by NT3.

Basic helix-loop-helix

Protein structural motif characterized by two α-helices connected by a loop, with one helix containing basic amino acids facilitating DNA binding. This motif is present in certain families of transcription factors.

Proneural gene

Generic name for genes expressed in neural progenitors that promote pan-neuronal differentiation.

POU homeodomain

Family of homeodomain transcription factors containing a shared additional conserved sequence adjacent to the homeodomain referred to as POU (bipartite DNA-binding domain) and named after the initials of the founder members: PIT1, OCT1/2 and UNC86.

Zinc finger

Small structural domain found in several DNA interacting proteins organized around a zinc ion, consisting of two antiparallel β-strands and an α-helix.

Ia muscle spindle afferent

Proprioceptive sensory afferent innervating the muscle spindles in the periphery and α-motor neuron centrally, distinct from the Ib afferent which innervates the Golgi tendon organs in the periphery.

α-motor neuron

Large motor neuron located in the spinal cord and the brainstem innervating extrafusal muscle fibres of skeletal muscle and responsible for their contraction, distinct from γ-motor neurons that innervate intrafusal muscle fibres.

Ret

Tyrosine kinase receptor activated by the glial cell line-derived neurotrophic factor family of ligand and named after rearranged during transformation because it is mutated in several cancer syndromes.

ETS transcription factor

One of the largest families of transcription factors that retains a region of conserved sequence, the ETS (E twenty-six) domain forming the winged helix-turn-helix DNA binding domain is composed of three α-helices and a four-stranded β-sheet.

Dorsal funiculus

Division of the white matter in the spinal cord consisting of a bundle of the nerves projecting from the dorsal root ganglion.

Short interfering RNA

(siRNA). Short double-stranded RNA molecules that silence gene expression in a sequence-specific manner by a process termed RNA interference. The 2006 Nobel Prize in Physiology or Medicine was given to the discovery of RNA interference.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marmigère, F., Ernfors, P. Specification and connectivity of neuronal subtypes in the sensory lineage. Nat Rev Neurosci 8, 114–127 (2007). https://doi.org/10.1038/nrn2057

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2057

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing