Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A structural perspective of the flavivirus life cycle

Key Points

  • Flavivirus genomes encode three structural proteins — capsid, membrane (M, expressed as prM, the precursor to M) and envelope (E) — that constitute the virus particle. Structures of several of the E and capsid proteins of flaviviruses have been solved to atomic resolution. In addition, cryo-electron microscopy has been used to visualize the whole structure of some flaviviruses at various stages of their life cycle. Combining these techniques to yield pseudo-atomic structures can further our understanding of dynamic processes in flaviviral life cycles.

  • The authors draw together a wealth of structural information to provide an overview of the interactions and conformational changes that occur when the flaviviruses (mainly dengue virus in this review) assemble and mature.

  • In the mature virion, the E and M proteins are partly buried in the virus membrane, one of a handful of proteins for which the structure within a membrane is known. Immature virion structures are also described and, together with the mature virion structure, enable the authors to review the conformational changes that accompany the virus maturation process.

  • Subviral particles, which assemble in the endoplasmic reticulum, provided the first insights into flavivirus assembly, and their production, composition and structure are described in this review.

  • Selected capsid protein structures are described, with particular reference to the early stages of virus assembly. Capsid proteins are important in the earliest step of assembly, through formation of a nucleocapsid core with genomic RNA

  • After entry into the host cell by receptor-mediated endocytosis, the acidic endosome environment triggers irreversible trimerization of the E protein, which exposes a fusion peptide and allows membrane fusion to release the virion into the cytoplasm. The authors review the structural features of E and how these relate to function, flavivirus receptor choice and the fusion process itself.

  • Finally, the authors discuss the class I and class II fusion mechanisms used by different enveloped viruses, in which very different structural proteins mediate membrane fusion.

Abstract

Dengue, Japanese encephalitis, West Nile and yellow fever belong to the Flavivirus genus, which is a member of the Flaviviridae family. They are human pathogens that cause large epidemics and tens of thousands of deaths annually in many parts of the world. The structural organization of these viruses and their associated structural proteins has provided insight into the molecular transitions that occur during the viral life cycle, such as assembly, budding, maturation and fusion. This review focuses mainly on structural studies of dengue virus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Flavivirus classification.
Figure 2: Membrane topology of the flavivirus structural proteins.
Figure 3: Structure of the ectodomain of the E protein in pre- and post-fusion conformations.
Figure 4: Packing of the E proteins in mature flavivirus virions.
Figure 5: Immature flavivirus particles.
Figure 6: Proposed rearrangement of the E proteins during maturation and fusion.
Figure 7: Proposed mechanisms for the membrane fusion process.

Similar content being viewed by others

References

  1. Kuno, G., Chang, G. J., Tsuchiya, K. R., Karabatsos, N. & Cropp, C. B. Phylogeny of the genus Flavivirus. J. Virol. 72, 73–83 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Lindenbach, B. D. & Rice, C. M. in Fields Virology (eds Knipe, D. M. & Howley, P. M.) 991–1041 (Lippincott Williams & Wilkins, Philadelphia, 2001).

    Google Scholar 

  3. Burke, D. S. & Monath, T. P. in Fields Virology (eds Knipe, D. M. & Howley, P. M.) 1043–1125 (Lippincott Williams & Wilkins, Philadelphia, 2001).

    Google Scholar 

  4. Gubler, D. J. Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century. Trends Microbiol. 10, 100–103 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. WHO. Dengue factsheet. [online], <http://www.who.int/mediacentre/factsheets/fs117/en/> (2002).

  6. CDC. Cases of West Nile human disease. [online], <http://www.cdc.gov/ncidod/dvbid/westnile/qa/cases.htm> (2004).

  7. WHO. Yellow fever factsheet. [online], <http://www.who.int/mediacentre/factsheets/fs100/en/> (2001).

  8. WHO. Immunization, vaccines and biologicals: Japanese encephalitis. [online], <http://www.who.int/vaccines-diseases/diseases/je.shtml> (2002).

  9. Lorenz, I. C., Allison, S. L., Heinz, F. X. & Helenius, A. Folding and dimerization of tick-borne encephalitis virus envelope proteins prM and E in the endoplasmic reticulum. J. Virol. 76, 5480–5491 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Stadler, K., Allison, S. L., Schalich, J. & Heinz, F. X. Proteolytic activation of tick-borne encephalitis virus by furin. J. Virol. 71, 8475–8481 (1997). Demonstrates that prM is cleaved by furin only after exposure to low pH, indicating that a conformational change is necessary before virus maturation can occur.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Allison, S. L., Schalich, J., Stiasny, K., Mandl, C. W. & Heinz, F. X. Mutational evidence for an internal fusion peptide in flavivirus envelope protein E. J. Virol. 75, 4268–4275 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Allison, S. L. et al. Oligomeric rearrangement of tick-borne encephalitis virus envelope proteins induced by an acidic pH. J. Virol. 69, 695–700 (1995). Identification of E trimers at acidic pH and E dimers at neutral pH. The first suggestion of an oligomeric rearrangement during fusion.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Corver, J. et al. Membrane fusion activity of tick-borne encephalitis virus and recombinant subviral particles in a liposomal model system. Virology 269, 37–46 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Lindenbach, B. D. & Rice, C. M. Molecular biology of flaviviruses. Adv. Virus Res. 59, 23–61 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Brinton, M. A. The molecular biology of West Nile virus: a new invader of the western hemisphere. Annu. Rev. Microbiol. 56, 371–402 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Guirakhoo, F., Heinz, F. X., Mandl, C. W., Holzmann, H. & Kunz, C. Fusion activity of flaviviruses: comparison of mature and immature (prM-containing) tick-borne encephalitis virions. J. Gen. Virol. 72, 1323–1329 (1991).

    Article  CAS  PubMed  Google Scholar 

  17. Guirakhoo, F., Bolin, R. A. & Roehrig, J. T. The Murray Valley encephalitis virus prM protein confers acid resistance to virus particles and alters the expression of epitopes within the R2 domain of E glycoprotein. Virology 191, 921–931 (1992).

    Article  CAS  PubMed  Google Scholar 

  18. Elshuber, S., Allison, S. L., Heinz, F. X. & Mandl, C. W. Cleavage of protein prM is necessary for infection of BHK-21 cells by tick-borne encephalitis virus. J. Gen. Virol. 84, 183–191 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Schalich, J. et al. Recombinant subviral particles from tick-borne encephalitis virus are fusogenic and provide a model system for studying flavivirus envelope glycoprotein functions. J. Virol. 70, 4549–4557 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Mancini, E. J., Clarke, M., Gowen, B. E., Rutten, T. & Fuller, S. D. Cryo-electron microscopy reveals the functional organization of an enveloped virus, Semliki Forest virus. Mol. Cell 5, 255–266 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Zhang, W. et al. Visualization of membrane protein domains by cryo-electron microscopy of dengue virus. Nature Struct. Biol. 10, 907–912 (2003). One of the few structures in which the transmembrane and membrane-associated proteins can be visualized.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang, W. et al. Placement of the structural proteins in Sindbis virus. J. Virol. 76, 11645–11658 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ma, L., Jones, C. T., Groesch, T. D., Kuhn, R. J. & Post, C. B. Solution structure of dengue virus capsid protein reveals another fold. Proc. Natl Acad. Sci. USA 101, 3414–3419 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Modis, Y., Ogata, S., Clements, D. & Harrison, S. C. A ligand-binding pocket in the dengue virus envelope glycoprotein. Proc. Natl Acad. Sci. USA 100, 6986–6991 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rey, F. A., Heinz, F. X., Mandl, C., Kunz, C. & Harrison, S. C. The envelope glycoprotein from tick-borne encephalitis virus at 2-Å resolution. Nature 375, 291–298 (1995). First crystal structure of a class II fusion protein in the pre-fusion conformation.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang, Y. et al. Conformational changes of the flavivirus E glycoprotein. Structure (Camb) 12, 1607–1618 (2004). Details the differences of the E protein structure during the virus life cycle.

    Article  CAS  Google Scholar 

  27. Lescar, J. et al. The fusion glycoprotein shell of Semliki Forest virus: an icosahedral assembly primed for fusogenic activation at endosomal pH. Cell 105, 137–148 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Choi, H. K. et al. Structural analysis of Sindbis virus capsid mutants involving assembly and catalysis. J. Mol. Biol. 262, 151–167 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Dokland, T. et al. West Nile virus core protein; tetramer structure and ribbon formation. Structure (Camb) 12, 1157–1163 (2004). References 23 and 29 describe the structures of the dengue-2 and Kunjin capsid proteins.

    Article  CAS  Google Scholar 

  30. Konishi, E. & Mason, P. W. Proper maturation of the Japanese encephalitis virus envelope glycoprotein requires cosynthesis with the premembrane protein. J. Virol. 67, 1672–1675 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Allison, S. L., Stadler, K., Mandl, C. W., Kunz, C. & Heinz, F. X. Synthesis and secretion of recombinant tick-borne encephalitis virus protein E in soluble and particulate form. J. Virol. 69, 5816–5820 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Lee, E. & Lobigs, M. Mechanism of virulence attenuation of glycosaminoglycan-binding variants of Japanese encephalitis virus and Murray Valley encephalitis virus. J. Virol. 76, 4901–4911 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hung, S. -L. et al. Analysis of the steps involved in dengue virus entry into host cells. Virology 257, 156–167 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Crill, W. D. & Roehrig, J. T. Monoclonal antibodies that bind to domain III of dengue virus E glycoprotein are the most efficient blockers of virus adsorption to Vero cells. J. Virol. 75, 7769–7773 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chiu, M. W. & Yang, Y. L. Blocking the dengue virus 2 infections on BHK-21 cells with purified recombinant dengue virus 2 E protein expressed in Escherichia coli. Biochem. Biophys. Res. Commun. 309, 672–678 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Chen, Y. et al. Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate. Nature Med. 3, 866–871 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Bhardwaj, S., Holbrook, M., Shope, R. E., Barrett, A. D. & Watowich, S. J. Biophysical characterization and vector-specific antagonist activity of domain III of the tick-borne flavivirus envelope protein. J. Virol. 75, 4002–4007 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wu, K. P. et al. Structural basis of a flavivirus recognized by its neutralizing antibody: solution structure of the domain III of the Japanese encephalitis virus envelope protein. J. Biol. Chem. 278, 46007–46013 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Navarro-Sanchez, E. et al. Dendritic-cell-specific ICAM3-grabbing non-integrin is essential for the productive infection of human dendritic cells by mosquito-cell-derived dengue viruses. EMBO Rep. 4, 723–728 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mukhopadhyay, S., Kim, B. S., Chipman, P. R., Rossmann, M. G. & Kuhn, R. J. Structure of West Nile virus. Science 302, 248 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Chen, Y. C., Wang, S. Y. & King, C. C. Bacterial lipopolysaccharide inhibits dengue virus infection of primary human monocytes/macrophages by blockade of virus entry via a CD14-dependent mechanism. J. Virol. 73, 2650–2657 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Jindadamrongwech, S., Thepparit, C. & Smith, D. R. Identification of GRP78 (BiP) as a liver cell expressed receptor element for dengue virus serotype 2. Arch. Virol. 149, 915–927 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Tassaneetrithep, B. et al. DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells. J. Exp. Med. 197, 823–829 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Reyes-del Valle, J. & del Angel, R. M. Isolation of putative dengue virus receptor molecules by affinity chromatography using a recombinant E protein ligand. J. Virol. Methods 116, 95–102 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Yazi Mendoza, M., Salas-Benito, J., Lanz-Mendoza, H., Hernandez-Martinez, S. & del Angel, R. A putative receptor for dengue virus in mosquito tissues: localization of a 45-kDa glycoprotein. Am. J. Trop. Med. Hyg. 67, 76–84 (2002).

    Article  PubMed  Google Scholar 

  46. Salas-Benito, J. S. & del Angel, R. M. Identification of two surface proteins from C6/36 cells that bind dengue type 4 virus. J. Virol. 71, 7246–7252 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Moreno-Altamirano, M. M. B., Sanchez-Garcia, F. J. & Munoz, M. L. Non Fc receptor-mediated infection of human macrophages by dengue virus serotype 2. J. Gen. Virol. 83, 1123–1130 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Ramos-Castaneda, J., Imbert, J. L., Barron, B. L. & Ramos, C. A 65-kDa trypsin-sensible membrane cell protein as a possible receptor for dengue virus in cultured neuroblastoma cells. J. Neurovirol. 3, 435–440 (1997).

    Article  CAS  PubMed  Google Scholar 

  49. de Lourdes Munoz, M. et al. Putative dengue virus receptors from mosquito cells. FEMS Microbiol. Lett. 168, 251–258 (1998).

    Article  CAS  Google Scholar 

  50. Bielefeldt-Ohmann, H. Analysis of antibody-independent binding of dengue viruses and dengue virus envelope protein to human myelomonocytic cells and B lymphocytes. Virus Res. 57, 63–79 (1998).

    Article  CAS  PubMed  Google Scholar 

  51. Bielefeldt-Ohmann, H., Meyer, M., Fitzpatrick, D. R. & Mackenzie, J. S. Dengue virus binding to human leukocyte cell lines: receptor usage differs between cell types and virus strains. Virus Res. 73, 81–89 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Wei, H. Y., Jiang, L. F., Fang, D. Y. & Guo, H. Y. Dengue virus type 2 infects human endothelial cells through binding of the viral envelope glycoprotein to cell surface polypeptides. J. Gen. Virol. 84, 3095–3098 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Hilgard, P. & Stockert, R. Heparan sulfate proteoglycans initiate dengue virus infection of hepatocytes. Hepatology 32, 1069–1077 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Chu, J. J. & Ng, M. L. Characterization of a 105-kDa plasma membrane associated glycoprotein that is involved in West Nile virus binding and infection. Virology 312, 458–469 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Kimura, T., Kimura-Kuroda, J., Nagashima, K. & Yasui, K. Analysis of virus-cell binding characteristics on the determination of Japanese encephalitis virus susceptibility. Arch. Virol. 139, 239–251 (1994).

    Article  CAS  PubMed  Google Scholar 

  56. Kopecky, J., Grubhoffer, L., Kovar, V., Jindrak, L. & Vokurkova, D. A putative host cell receptor for tick-borne encephalitis virus identified by anti-idiotypic antibodies and virus affinoblotting. Intervirology 42, 9–16 (1999).

    Article  CAS  PubMed  Google Scholar 

  57. Maldov, D. G., Karganova, G. G. & Timofeev, A. V. Tick-borne encephalitis virus interaction with the target cells. Arch. Virol. 127, 321–325 (1992).

    Article  CAS  PubMed  Google Scholar 

  58. Martinez-Barragan, J. J. & del Angel, R. M. Identification of a putative coreceptor on Vero cells that participates in dengue 4 virus infection. J. Virol. 75, 7818–7827 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lin, Y. L. et al. Heparin inhibits dengue-2 virus infection of five human liver cell lines. Antiviral Res. 56, 93–96 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Germi, R. et al. Heparan sulfate-mediated binding of infectious dengue virus type 2 and yellow fever virus. Virology 292, 162–168 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Su, C. M., Liao, C. L., Lee, Y. L. & Lin, Y. L. Highly sulfated forms of heparin sulfate are involved in Japanese encephalitis virus infection. Virology 286, 206–215 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Lee, E. & Lobigs, M. Substitutions at the putative receptor-binding site of an encephalitic flavivirus alter virulence and host cell tropism and reveal a role for glycosaminoglycans in entry. J. Virol. 74, 8867–8875 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mandl, C. W. et al. Adaptation of tick-borne encephalitis virus to BHK-21 cells results in the formation of multiple heparan sulfate binding sites in the envelope protein and attenuation in vivo. J. Virol. 75, 5627–5637 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kroschewski, H., Allison, S. L., Heinz, F. X. & Mandl, C. W. Role of heparan sulfate for attachment and entry of tick-borne encephalitis virus. Virology 308, 92–100 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Dimitrov, D. S. Virus entry: molecular mechanisms and biomedical applications. Nature Rev. Microbiol. 2, 109–122 (2004).

    Article  CAS  Google Scholar 

  66. van der Most, R. G., Corver, J. & Strauss, J. H. Mutagenesis of the RGD motif in the yellow fever virus 17D envelope protein. Virology 265, 83–95 (1999).

    Article  CAS  PubMed  Google Scholar 

  67. Allison, S. L., Stiasny, K., Stadler, K., Mandl, C. W. & Heinz, F. X. Mapping of functional elements in the stem-anchor region of tick-borne encephalitis virus envelope protein E. J. Virol. 73, 5605–5612 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Stiasny, K., Allison, S. L., Marchler-Bauer, A., Kunz, C. & Heinz, F. X. Structural requirements for low-pH-induced rearrangements in the envelope glycoprotein of tick-borne encephalitis virus. J. Virol. 70, 8142–8147 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Stiasny, K., Allison, S. L., Mandl, C. W. & Heinz, F. X. Role of metastability and acidic pH in membrane fusion by tick-borne encephalitis virus. J. Virol. 75, 7392–7398 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Stiasny, K., Allison, S. L., Schalich, J. & Heinz, F. X. Membrane interactions of the tick-borne encephalitis virus fusion protein E at low pH. J. Virol. 76, 3784–3790 (2002). Demonstrates that the stem region of the E protein is not necessary for trimer formation if the trimerization occurs in the presence of lipids.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bressanelli, S. et al. Structure of a flavivirus envelope glycoprotein in its low-pH-induced membrane fusion conformation. EMBO J. 23, 728–738 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Modis, Y., Ogata, S., Clements, D. & Harrison, S. C. Structure of the dengue virus envelope protein after membrane fusion. Nature 427, 313–319 (2004). References 71 and 72 describe the first X-ray structures of class II fusion protein in post-fusion conformation.

    Article  CAS  PubMed  Google Scholar 

  73. Gibbons, D. L. et al. Conformational change and protein–protein interactions of the fusion protein of Semliki Forest virus. Nature 427, 320–325 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Jones, C. T. et al. Flavivirus capsid is a dimeric α-helical protein. J. Virol. 77, 7143–7149 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kiermayr, S., Kofler, R. M., Mandl, C. W., Messner, P. & Heinz, F. X. Isolation of capsid protein dimers from the tick-borne encephalitis (TBE) flavivirus and in vitro assembly of capsid-like particles. J. Virol. 78, 8078–8084 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Johnson, J. E. Functional implications of protein–protein interactions in icosahedral viruses. Proc. Natl Acad. Sci. USA 93, 27–33 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Rossmann, M. G. & Johnson, J. E. Icosahedral RNA virus structure. Annu. Rev. Biochem. 58, 533–573 (1989).

    Article  CAS  PubMed  Google Scholar 

  78. Kofler, R. M., Heinz, F. X. & Mandl, C. W. Capsid protein C of tick-borne encephalitis virus tolerates large internal deletions and is a favorable target for attenuation of virulence. J. Virol. 76, 3534–3543 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kofler, R. M., Leitner, A., O'Riordain, G., Heinz, F. X. & Mandl, C. W. Spontaneous mutations restore the viability of tick-borne encephalitis virus mutants with large deletions in protein C. J. Virol. 77, 443–451 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Russell, P. K., Brandt, W. E. & Dalrymple, J. in The Togaviruses (ed. Schlesinger, R. W.) 503–529 (Academic Press, New York, 1980).

    Book  Google Scholar 

  81. Ferlenghi, I. et al. Molecular organization of a recombinant subviral particle from tick-borne encephalitis virus. Mol. Cell 7, 593–602 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Allison, S. L. et al. Two distinct size classes of immature and mature subviral particles from tick-borne encephalitis virus. J. Virol. 77, 11357–11366 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Konishi, E. et al. Mice immunized with a subviral particle containing the Japanese encephalitis virus prM/M and E proteins are protected from lethal JEV infection. Virology 188, 714–720 (1992).

    Article  CAS  PubMed  Google Scholar 

  84. Kuhn, R. J. et al. Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell 108, 717–725 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhang, Y. et al. Structures of immature flavivirus particles. EMBO J. 22, 2604–2613 (2003). The first structures of immature flavivirus particles.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Caspar, D. L. & Klug, A. Physical principles in the construction of regular viruses. Cold Spring Harb. Symp. Quant. Biol. 27, 1–24 (1962).

    Article  CAS  PubMed  Google Scholar 

  87. Heinz, F. X. & Allison, S. L. Structures and mechanisms in flavivirus fusion. Adv. Virus Res. 55, 231–269 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Werten, P. J. et al. Progress in the analysis of membrane protein structure and function. FEBS Lett. 529, 65–72 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Cockburn, J. J., Bamford, J. K., Grimes, J. M., Bamford, D. H. & Stuart, D. I. Crystallization of the membrane-containing bacteriophage PRD1 in quartz capillaries by vapour diffusion. Acta Crystallogr. D Biol. Crystallogr. 59, 538–540 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. Op De Beeck, A. et al. Role of the transmembrane domains of prM and E proteins in the formation of yellow fever virus envelope. J. Virol. 77, 813–820 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Pletnev, S. V. et al. Locations of carbohydrate sites on α-virus glycoproteins show that E1 forms an icosahedral scaffold. Cell 105, 127–136 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wilson, I. A., Skehel, J. J. & Wiley, D. C. Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 Å resolution. Nature 289, 366–373 (1981).

    Article  CAS  PubMed  Google Scholar 

  93. Skehel, J. J. & Wiley, D. C. Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu. Rev. Biochem. 69, 531–569 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. Weissenhorn, W. et al. Structural basis for membrane fusion by enveloped viruses. Mol. Membr. Biol. 16, 3–9 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank C. Jones, W. Zhang and Y. Zhang for many helpful and enthusiastic discussions and for providing figures. We gratefully acknowledge support to M.G.R. and R.J.K. from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael G. Rossmann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez

dengue virus

Japanese encephalitis virus

tick-borne encephalitis virus

West Nile virus

yellow fever virus

Protein Data Bank

dengue-2 capsid protein

dengue-2 E protein

JEV E protein

Kunjin capsid protein

TBEV E protein

FURTHER INFORMATION

Purdue University Structural Virology

Glossary

ECTODOMAIN

The part of the protein that is exterior to the lipid membrane.

TRIANGULATION NUMBER

The triangulation (T) number of an isometric virus designates the quasi-symmetry. In an icosahedron there are 60 asymmetric subunits. In an icosahedral particle, there are 60T protein subunits that comprise the structure.

METASTABLE

A system that is above its minimum-energy state, but which requires an energy input before it can reach a lower-energy state. As a result, a metastable system functions like a stable system provided the energy input is below a certain threshold.

DISORDERED

A molecule, or part of a molecule, that has no unique structure. Every molecule has a different structure in the disordered region

QUASI-SYMMETRY

The symmetry relationship between proteins in the asymmetric unit of an icosahedron, which is determined by the ability of each protein to have almost the same local environment.

ICOSAHEDRAL REFERENCE AXES

The specific symmetry axes in an icosahedron that are used to define the position of any point or atom in the icosahedron.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mukhopadhyay, S., Kuhn, R. & Rossmann, M. A structural perspective of the flavivirus life cycle. Nat Rev Microbiol 3, 13–22 (2005). https://doi.org/10.1038/nrmicro1067

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1067

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing