Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Fine-tuning of GPCR activity by receptor-interacting proteins

Key Points

  • G protein-coupled receptors (GPCRs) are a large family of seven-transmembrane proteins that can be activated by a diverse array of ligands, including hormones, neurotransmitters and sensory stimuli. Following activation, GPCRs associate with heterotrimeric G proteins to stimulate G protein-mediated signalling. GPCR activity can be regulated by receptor interactions with kinases, arrestins and other receptors.

  • In addition to GPCR associations with G proteins, kinases, arrestins and other receptors, GPCRs can interact in a more receptor-selective manner with various other cytoplasmic or transmembrane proteins. These receptor-selective partners can mediate GPCR signalling, organize receptor signalling through G proteins, direct GPCR trafficking, anchor GPCRs in particular subcellular areas and/or influence GPCR ligand binding properties.

  • GPCR interactors that modulate GPCR signalling can either enhance G protein-mediated signalling, by tethering downstream effectors in the vicinity of activated receptors, or impair G protein-mediated signalling, by hindering the ability of the receptors to interact with G proteins and/or by recruiting negative regulators of G protein signalling to the receptor complex.

  • Some GPCR interactors are required for efficient biosynthetic trafficking of their associated GPCRs. Other GPCR interactors primarily regulate the post-endocytic trafficking of GPCRs, determining whether their associated receptors are recycled back to the plasma membrane or targeted to lysosomes for degradation.

  • GPCR interactors can exert multiple effects on their associated GPCRs. For example, the receptor activity-modifying proteins influence the biosynthetic trafficking and the ligand binding properties of their associated receptors.

  • Many GPCRs are important drug targets, and therefore advances in understanding the fine-tuning of GPCR activity by receptor-interacting proteins can provide novel therapeutic insights.

Abstract

G protein-coupled receptors (GPCRs) mediate physiological responses to various ligands, such as hormones, neurotransmitters and sensory stimuli. The signalling and trafficking properties of GPCRs are often highly malleable depending on the cellular context. Such fine-tuning of GPCR function can be attributed in many cases to receptor-interacting proteins that are differentially expressed in distinct cell types. In some cases these GPCR-interacting partners directly mediate receptor signalling, whereas in other cases they act mainly as scaffolds to modulate G protein-mediated signalling. Furthermore, GPCR-interacting proteins can have a big impact on the regulation of GPCR trafficking, localization and/or pharmacological properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: GPCR signalling can be mediated by receptor-interacting proteins.
Figure 2: GPCR-interacting proteins can modulate G protein-mediated signalling.
Figure 3: GPCR-interacting proteins can regulate the post-endocytic trafficking of GPCRs.

Similar content being viewed by others

References

  1. Bridges, T. M. & Lindsley, C. W. G-protein-coupled receptors: from classical modes of modulation to allosteric mechanisms. ACS Chem. Biol. 3, 530–541 (2008).

    CAS  PubMed  Google Scholar 

  2. Reiter, E. & Lefkowitz, R. J. GRKs and β-arrestins: roles in receptor silencing, trafficking and signaling. Trends Endocrinol. Metab. 17, 159–165 (2006).

    CAS  PubMed  Google Scholar 

  3. Moore, C. A., Milano, S. K. & Benovic, J. L. Regulation of receptor trafficking by GRKs and arrestins. Annu. Rev. Physiol. 69, 451–482 (2007).

    CAS  PubMed  Google Scholar 

  4. Premont, R. T. & Gainetdinov, R. R. Physiological roles of G protein-coupled receptor kinases and arrestins. Annu. Rev. Physiol. 69, 511–534 (2007).

    CAS  PubMed  Google Scholar 

  5. Hanyaloglu, A. C. & von Zastrow, M. Regulation of GPCRs by endocytic membrane trafficking and its potential implications. Annu. Rev. Pharmacol. Toxicol. 48, 537–568 (2008).

    CAS  PubMed  Google Scholar 

  6. Bulenger, S., Marullo, S. & Bouvier, M. Emerging role of homo- and heterodimerization in G-protein-coupled receptor biosynthesis and maturation. Trends Pharmacol. Sci. 26, 131–137 (2005).

    CAS  PubMed  Google Scholar 

  7. Prinster, S. C., Hague, C. & Hall, R. A. Heterodimerization of G protein-coupled receptors: specificity and functional significance. Pharmacol. Rev. 57, 289–298 (2005).

    CAS  PubMed  Google Scholar 

  8. Milligan, G. G protein-coupled receptor hetero-dimerization: contribution to pharmacology and function. Br. J. Pharmacol. 158, 5–14 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Marrero, M. B., Venema, V. J., Ju, H., Eaton, D. C. & Venema, R. C. Regulation of angiotensin II-induced JAK2 tyrosine phosphorylation: roles of SHP-1 and SHP-2. Am. J. Physiol. 275, C1216–C1223 (1998).

    CAS  PubMed  Google Scholar 

  10. Godeny, M. D. et al. The N-terminal SH2 domain of the tyrosine phosphatase, SHP-2, is essential for Jak2-dependent signaling via the angiotensin II type AT1 receptor. Cell Signal. 19, 600–609 (2007).

    CAS  PubMed  Google Scholar 

  11. Aplin, M., Christensen, G. L. & Hansen, J. L. Pharmacologic perspectives of functional selectivity by the angiotensin II type 1 receptor. Trends Cardiovasc. Med. 18, 305–312 (2008).

    CAS  PubMed  Google Scholar 

  12. Frank, G. D. et al. Requirement of Ca2+ and PKCδ for Janus kinase 2 activation by angiotensin II: involvement of PYK2. Mol. Endocrinol. 16, 367–377 (2002).

    CAS  PubMed  Google Scholar 

  13. Hunyady, L. & Catt, K. J. Pleiotropic AT1 receptor signaling pathways mediating physiological and pathogenic actions of angiotensin II. Mol. Endocrinol. 20, 953–970 (2006).

    CAS  PubMed  Google Scholar 

  14. Lukashova, V., Asselin, C., Krolewski, J. J., Rola-Pleszczynski, M. & Stankova, J. G-protein-independent activation of Tyk2 by the platelet-activating factor receptor. J. Biol. Chem. 276, 24113–24121 (2001).

    CAS  PubMed  Google Scholar 

  15. Lukashova, V., Chen, Z., Duhe, R. J., Rola-Pleszczynski, M. & Stankova, J. Janus kinase 2 activation by the platelet-activating factor receptor (PAFR): roles of Tyk2 and PAFR C terminus. J. Immunol. 171, 3794–3800 (2003).

    CAS  PubMed  Google Scholar 

  16. Dev, K. K. Making protein interactions druggable: targeting PDZ domains. Nature Rev. Drug Discov. 3, 1047–1056 (2004).

    CAS  Google Scholar 

  17. Hall, R. A. et al. The β2-adrenergic receptor interacts with the Na+/H+-exchanger regulatory factor to control Na+/H+ exchange. Nature 392, 626–630 (1998).

    CAS  PubMed  Google Scholar 

  18. Hall, R. A. et al. A C-terminal motif found in the β2-adrenergic receptor, P2Y1 receptor and cystic fibrosis transmembrane conductance regulator determines binding to the Na+/H+ exchanger regulatory factor family of PDZ proteins. Proc. Natl Acad. Sci. USA 95, 8496–8501 (1998). An early example of G protein-independent signalling by a GPCR is described.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Li, J. G., Chen, C. & Liu-Chen, L. Y. Ezrin-radixin-moesin-binding phosphoprotein-50/Na+/H+ exchanger regulatory factor (EBP50/NHERF) blocks U50, 488H-induced down-regulation of the human κ opioid receptor by enhancing its recycling rate. J. Biol. Chem. 277, 27545–27552 (2002).

    CAS  PubMed  Google Scholar 

  20. Huang, P. et al. κ Opioid receptor interacts with Na+/H+-exchanger regulatory factor-1/Ezrin-radixin-moesin-binding phosphoprotein-50 (NHERF-1/EBP50) to stimulate Na+/H+ exchange independent of Gi/Go proteins. J. Biol. Chem. 279, 25002–25009 (2004).

    CAS  PubMed  Google Scholar 

  21. Bousquet, C. et al. Direct binding of p85 to SST2 somatostatin receptor reveals a novel mechanism for inhibiting PI3K pathway. EMBO J. 25, 3943–3954 (2006). G protein-independent signalling by a GPCR is shown to occur through agonist-induced disruption of a complex constituting a cytoplasmic protein and a receptor.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Huber, A. et al. The transient receptor potential protein (Trp), a putative store-operated Ca2+ channel essential for phosphoinositide-mediated photoreception, forms a signaling complex with NorpA, InaC and InaD. EMBO J. 15, 7036–7045 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Shieh, B. H. & Zhu, M. Y. Regulation of the TRP Ca2+ channel by INAD in Drosophila photoreceptors. Neuron 16, 991–998 (1996).

    CAS  PubMed  Google Scholar 

  24. Chevesich, J., Kreuz, A. J. & Montell, C. Requirement for the PDZ domain protein, INAD, for localization of the TRP store-operated channel to a signaling complex. Neuron 18, 95–105 (1997).

    CAS  PubMed  Google Scholar 

  25. Tsunoda, S. et al. A multivalent PDZ-domain protein assembles signalling complexes in a G-protein-coupled cascade. Nature 388, 243–249 (1997).

    CAS  PubMed  Google Scholar 

  26. Xu, X. Z., Choudhury, A., Li, X. & Montell, C. Coordination of an array of signaling proteins through homo- and heteromeric interactions between PDZ domains and target proteins. J. Cell Biol. 142, 545–555 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Popescu, D. C., Ham, A. J. & Shieh, B. H. Scaffolding protein INAD regulates deactivation of vision by promoting phosphorylation of transient receptor potential by eye protein kinase C in Drosophila. J. Neurosci. 26, 8570–8577 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Peng, L., Popescu, D. C., Wang, N. & Shieh, B. H. Anchoring TRP to the INAD macromolecular complex requires the last 14 residues in its carboxyl terminus. J. Neurochem. 104, 1526–1535 (2008).

    CAS  PubMed  Google Scholar 

  29. Scott, K. & Zuker, C. S. Assembly of the Drosophila phototransduction cascade into a signalling complex shapes elementary responses. Nature 395, 805–808 (1998).

    CAS  PubMed  Google Scholar 

  30. Mahon, M. J., Donowitz, M., Yun, C. C. & Segre, G. V. Na+/H+ exchanger regulatory factor 2 directs parathyroid hormone 1 receptor signalling. Nature 417, 858–861 (2002). A GPCR is found to switch from one G protein-mediated signalling pathway to another, depending on the presence of a receptor-interacting scaffold protein.

    CAS  PubMed  Google Scholar 

  31. Sneddon, W. B. et al. Activation-independent parathyroid hormone receptor internalization is regulated by NHERF1 (EBP50). J. Biol. Chem. 278, 43787–43796 (2003).

    CAS  PubMed  Google Scholar 

  32. Mahon, M. J. & Segre, G. V. Stimulation by parathyroid hormone of a NHERF-1-assembled complex consisting of the parathyroid hormone I receptor, phospholipase Cβ, and actin increases intracellular calcium in opossum kidney cells. J. Biol. Chem. 279, 23550–23558 (2004).

    CAS  PubMed  Google Scholar 

  33. Wheeler, D. et al. Regulation of parathyroid hormone type 1 receptor dynamics, traffic, and signaling by the Na+/H+ exchanger regulatory factor-1 in rat osteosarcoma ROS 17/2.8 cells. Mol. Endocrinol. 22, 1163–1170 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang, B., Yang, Y., Abou-Samra, A. B. & Friedman, P. A. NHERF1 regulates parathyroid hormone receptor desensitization: interference with β-arrestin binding. Mol. Pharmacol. 75, 1189–1197 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Oh, Y. S. et al. NHERF2 specifically interacts with LPA2 receptor and defines the specificity and efficiency of receptor-mediated phospholipase C-β3 activation. Mol. Cell Biol. 24, 5069–5079 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Fam, S. R. et al. P2Y1 receptor signaling is controlled by interaction with the PDZ scaffold NHERF-2. Proc. Natl Acad. Sci. USA 102, 8042–8047 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Paquet, M. et al. The PDZ scaffold NHERF-2 interacts with mGluR5 and regulates receptor activity. J. Biol. Chem. 281, 29949–29961 (2006).

    CAS  PubMed  Google Scholar 

  38. Rochdi, M. D. et al. Regulation of GTP-binding protein αq (Gαq) signaling by the ezrin-radixin-moesin-binding phosphoprotein-50 (EBP50). J. Biol. Chem. 277, 40751–40759 (2002).

    CAS  PubMed  Google Scholar 

  39. Tang, Y. et al. Association of mammalian trp4 and phospholipase C isozymes with a PDZ domain-containing protein, NHERF. J. Biol. Chem. 275, 37559–37564 (2000).

    CAS  PubMed  Google Scholar 

  40. Lee-Kwon, W., Wade, J. B., Zhang, Z., Pallone, T. L. & Weinman, E. J. Expression of TRPC4 channel protein that interacts with NHERF-2 in rat descending vasa recta. Am. J. Physiol. Cell Physiol. 288, C942–C949 (2005).

    CAS  PubMed  Google Scholar 

  41. Hwang, J. I. et al. Regulation of phospholipase C-β3 activity by Na+/H+ exchanger regulatory factor 2. J. Biol. Chem. 275, 16632–16637 (2000).

    CAS  PubMed  Google Scholar 

  42. Lee-Kwon, W. et al. Ca2+-dependent inhibition of NHE3 requires PKC α which binds to E3KARP to decrease surface NHE3 containing plasma membrane complexes. Am. J. Physiol. Cell Physiol. 285, C1527–C1536 (2003).

    CAS  PubMed  Google Scholar 

  43. Kunkel, M. T., Garcia, E. L., Kajimoto, T., Hall, R. A. & Newton, A. C. The protein scaffold NHERF-1 controls the amplitude and duration of localized protein kinase D activity. J. Biol. Chem. 284, 24653–24661 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Weinman, E. J., Hall, R. A., Friedman, P. A., Liu-Chen, L. Y. & Shenolikar, S. The association of NHERF adaptor proteins with G protein-coupled receptors and receptor tyrosine kinases. Annu. Rev. Physiol. 68, 491–505 (2006).

    CAS  PubMed  Google Scholar 

  45. Balasubramanian, S., Fam, S. R. & Hall, R. A. GABAB receptor association with the PDZ scaffold Mupp1 alters receptor stability and function. J. Biol. Chem. 282, 4162–4171 (2007).

    CAS  PubMed  Google Scholar 

  46. Guillaume, J. L. et al. The PDZ protein mupp1 promotes Gi coupling and signaling of the Mt1 melatonin receptor. J. Biol. Chem. 283, 16762–16771 (2008).

    CAS  PubMed  Google Scholar 

  47. Yao, R., Natsume, Y. & Noda, T. MAGI-3 is involved in the regulation of the JNK signaling pathway as a scaffold protein for frizzled and Ltap. Oncogene 23, 6023–6030 (2004).

    CAS  PubMed  Google Scholar 

  48. Zhang, H., Wang, D., Sun, H., Hall, R. A. & Yun, C. C. MAGI-3 regulates LPA-induced activation of Erk and RhoA. Cell Signal. 19, 261–268 (2007).

    CAS  PubMed  Google Scholar 

  49. Yamada, T., Ohoka, Y., Kogo, M. & Inagaki, S. Physical and functional interactions of the lysophosphatidic acid receptors with PDZ domain-containing Rho guanine nucleotide exchange factors (RhoGEFs). J. Biol. Chem. 280, 19358–19363 (2005).

    CAS  PubMed  Google Scholar 

  50. Brakeman, P. R. et al. Homer: a protein that selectively binds metabotropic glutamate receptors. Nature 386, 284–288 (1997).

    CAS  PubMed  Google Scholar 

  51. Xiao, B. et al. Homer regulates the association of group 1 metabotropic glutamate receptors with multivalent complexes of homer-related, synaptic proteins. Neuron 21, 707–716 (1998).

    CAS  PubMed  Google Scholar 

  52. Tu, J. C. et al. Homer binds a novel proline-rich motif and links group 1 metabotropic glutamate receptors with IP3 receptors. Neuron 21, 717–726 (1998).

    CAS  PubMed  Google Scholar 

  53. Kato, A. et al. Novel members of the Vesl/Homer family of PDZ proteins that bind metabotropic glutamate receptors. J. Biol. Chem. 273, 23969–23975 (1998).

    CAS  PubMed  Google Scholar 

  54. Shih, M., Lin, F., Scott, J. D., Wang, H. Y. & Malbon, C. C. Dynamic complexes of β2-adrenergic receptors with protein kinases and phosphatases and the role of gravin. J. Biol. Chem. 274, 1588–1595 (1999).

    CAS  PubMed  Google Scholar 

  55. Fraser, I. D. et al. Assembly of an A kinase-anchoring protein-β2-adrenergic receptor complex facilitates receptor phosphorylation and signaling. Curr. Biol. 10, 409–412 (2000).

    CAS  PubMed  Google Scholar 

  56. Fan, G., Shumay, E., Wang, H. & Malbon, C. C. The scaffold protein gravin (cAMP-dependent protein kinase-anchoring protein 250) binds the β2-adrenergic receptor via the receptor cytoplasmic Arg-329 to Leu-413 domain and provides a mobile scaffold during desensitization. J. Biol. Chem. 276, 24005–24014 (2001).

    CAS  PubMed  Google Scholar 

  57. Tao, J., Wang, H. Y. & Malbon, C. C. Protein kinase A regulates AKAP250 (gravin) scaffold binding to the β2-adrenergic receptor. EMBO J. 22, 6419–6429 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Gardner, L. A., Tavalin, S. J., Goehring, A. S., Scott, J. D. & Bahouth, S. W. AKAP79-mediated targeting of the cyclic AMP-dependent protein kinase to the β1-adrenergic receptor promotes recycling and functional resensitization of the receptor. J. Biol. Chem. 281, 33537–33553 (2006).

    CAS  PubMed  Google Scholar 

  59. Kammermeier, P. J. & Worley, P. F. Homer 1a uncouples metabotropic glutamate receptor 5 from postsynaptic effectors. Proc. Natl Acad. Sci. USA 104, 6055–6060 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Kammermeier, P. J. Endogenous homer proteins regulate metabotropic glutamate receptor signaling in neurons. J. Neurosci. 28, 8560–8567 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Smith, F. D., Oxford, G. S. & Milgram, S. L. Association of the D2 dopamine receptor third cytoplasmic loop with spinophilin, a protein phosphatase-1-interacting protein. J. Biol. Chem. 274, 19894–19900 (1999).

    CAS  PubMed  Google Scholar 

  62. Richman, J. G. et al. Agonist-regulated interaction between α2-adrenergic receptors and spinophilin. J. Biol. Chem. 276, 15003–15008 (2001).

    CAS  PubMed  Google Scholar 

  63. Wang, X. et al. Spinophilin regulates Ca2+ signalling by binding the N-terminal domain of RGS2 and the third intracellular loop of G-protein-coupled receptors. Nature Cell Biol. 7, 405–411 (2005). A scaffold protein is shown to impair GPCR signalling by recruiting RGS proteins to the receptor complex.

    CAS  PubMed  Google Scholar 

  64. Wang, X. et al. Spinophilin/neurabin reciprocally regulate signaling intensity by G protein-coupled receptors. EMBO J. 26, 2768–2776 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Wang, Q. et al. Spinophilin blocks arrestin actions in vitro and in vivo at G protein-coupled receptors. Science 304, 1940–1944 (2004).

    CAS  PubMed  Google Scholar 

  66. Snow, B. E. et al. GTPase activating specificity of RGS12 and binding specificity of an alternatively spliced PDZ (PSD-95/Dlg/ZO-1) domain. J. Biol. Chem. 273, 17749–17755 (1998).

    CAS  PubMed  Google Scholar 

  67. Bernstein, L. S. et al. RGS2 binds directly and selectively to the M1 muscarinic acetylcholine receptor third intracellular loop to modulate Gq/11α signaling. J. Biol. Chem. 279, 21248–21256 (2004).

    CAS  PubMed  Google Scholar 

  68. Hague, C. et al. Selective inhibition of α1A-adrenergic receptor signaling by RGS2 association with the receptor third intracellular loop. J. Biol. Chem. 280, 27289–27295 (2005).

    CAS  PubMed  Google Scholar 

  69. Georgoussi, Z. et al. Selective interactions between G protein subunits and RGS4 with the C-terminal domains of the μ- and δ-opioid receptors regulate opioid receptor signaling. Cell Signal. 18, 771–782 (2006).

    CAS  PubMed  Google Scholar 

  70. Itoh, M., Nagatomo, K., Kubo, Y. & Saitoh, O. Alternative splicing of RGS8 gene changes the binding property to the M1 muscarinic receptor to confer receptor type-specific Gq regulation. J. Neurochem. 99, 1505–1516 (2006).

    CAS  PubMed  Google Scholar 

  71. Miyamoto-Matsubara, M., Saitoh, O., Maruyama, K., Aizaki, Y. & Saito, Y. Regulation of melanin-concentrating hormone receptor 1 signaling by RGS8 with the receptor third intracellular loop. Cell Signal. 20, 2084–2094 (2008).

    CAS  PubMed  Google Scholar 

  72. Neitzel, K. L. & Hepler, J. R. Cellular mechanisms that determine selective RGS protein regulation of G protein-coupled receptor signaling. Semin. Cell Dev. Biol. 17, 383–389 (2006).

    CAS  PubMed  Google Scholar 

  73. Xie, G. X. & Palmer, P. P. How regulators of G protein signaling achieve selective regulation. J. Mol. Biol. 366, 349–365 (2007).

    CAS  PubMed  Google Scholar 

  74. Minakami, R., Jinnai, N. & Sugiyama, H. Phosphorylation and calmodulin binding of the metabotropic glutamate receptor subtype 5 (mGluR5) are antagonistic in vitro. J. Biol. Chem. 272, 20291–20298 (1997).

    CAS  PubMed  Google Scholar 

  75. Lee, J. H. et al. Calmodulin dynamically regulates the trafficking of the metabotropic glutamate receptor mGluR5. Proc. Natl Acad. Sci. USA 105, 12575–12580 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Nakajima, Y., Yamamoto, T., Nakayama, T. & Nakanishi, S. A relationship between protein kinase C phosphorylation and calmodulin binding to the metabotropic glutamate receptor subtype 7. J. Biol. Chem. 274, 27573–27577 (1999).

    CAS  PubMed  Google Scholar 

  77. Sorensen, S. D., Macek, T. A., Cai, Z., Saugstad, J. A. & Conn, P. J. Dissociation of protein kinase-mediated regulation of metabotropic glutamate receptor 7 (mGluR7) interactions with calmodulin and regulation of mGluR7 function. Mol. Pharmacol. 61, 1303–1312 (2002).

    CAS  PubMed  Google Scholar 

  78. Turner, J. H., Gelasco, A. K. & Raymond, J. R. Calmodulin interacts with the third intracellular loop of the serotonin 5-hydroxytryptamine1A receptor at two distinct sites: putative role in receptor phosphorylation by protein kinase C. J. Biol. Chem. 279, 17027–17037 (2004).

    CAS  PubMed  Google Scholar 

  79. Turner, J. H. & Raymond, J. R. Interaction of calmodulin with the serotonin 5-hydroxytryptamine2A receptor. A putative regulator of G protein coupling and receptor phosphorylation by protein kinase C. J. Biol. Chem. 280, 30741–30750 (2005).

    CAS  PubMed  Google Scholar 

  80. Labasque, M., Reiter, E., Becamel, C., Bockaert, J. & Marin, P. Physical interaction of calmodulin with the 5-hydroxytryptamine2C receptor C-terminus is essential for G protein-independent, arrestin-dependent receptor signaling. Mol. Biol. Cell 19, 4640–4650 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Bofill-Cardona, E. et al. Binding of calmodulin to the D2-dopamine receptor reduces receptor signaling by arresting the G protein activation switch. J. Biol. Chem. 275, 32672–32680 (2000).

    CAS  PubMed  Google Scholar 

  82. Liu, Y., Buck, D. C., Macey, T. A., Lan, H. & Neve, K. A. Evidence that calmodulin binding to the dopamine D2 receptor enhances receptor signaling. J. Recept Signal Transduct Res. 27, 47–65 (2007).

    PubMed  Google Scholar 

  83. Wang, D., Sadee, W. & Quillan, J. M. Calmodulin binding to G protein-coupling domain of opioid receptors. J. Biol. Chem. 274, 22081–22088 (1999).

    CAS  PubMed  Google Scholar 

  84. Nickols, H. H., Shah, V. N., Chazin, W. J. & Limbird, L. E. Calmodulin interacts with the V2 vasopressin receptor: elimination of binding to the C terminus also eliminates arginine vasopressin-stimulated elevation of intracellular calcium. J. Biol. Chem. 279, 46969–46980 (2004).

    CAS  PubMed  Google Scholar 

  85. Mahon, M. J. & Shimada, M. Calmodulin interacts with the cytoplasmic tails of the parathyroid hormone 1 receptor and a sub-set of class b G-protein coupled receptors. FEBS Lett. 579, 803–807 (2005).

    CAS  PubMed  Google Scholar 

  86. Feng, G. J. et al. Selective interactions between helix VIII of the human μ-opioid receptors and the C terminus of periplakin disrupt G protein activation. J. Biol. Chem. 278, 33400–33407 (2003).

    CAS  PubMed  Google Scholar 

  87. Murdoch, H. et al. Periplakin interferes with G protein activation by the melanin-concentrating hormone receptor-1 by binding to the proximal segment of the receptor C-terminal tail. J. Biol. Chem. 280, 8208–8220 (2005).

    CAS  PubMed  Google Scholar 

  88. Francke, F. et al. Interaction of neurochondrin with the melanin-concentrating hormone receptor 1 interferes with G protein-coupled signal transduction but not agonist-mediated internalization. J. Biol. Chem. 281, 32496–32507 (2006).

    CAS  PubMed  Google Scholar 

  89. Ward, R. J., Jenkins, L. & Milligan, G. Selectivity and functional consequences of interactions of family A G protein-coupled receptors with neurochondrin and periplakin. J. Neurochem. 109, 182–192 (2009).

    CAS  PubMed  Google Scholar 

  90. Shieh, B. H., Stamnes, M. A., Seavello, S., Harris, G. L. & Zuker, C. S. The ninaA gene required for visual transduction in Drosophila encodes a homologue of cyclosporin A-binding protein. Nature 338, 67–70 (1989).

    CAS  PubMed  Google Scholar 

  91. Baker, E. K., Colley, N. J. & Zuker, C. S. The cyclophilin homolog NinaA functions as a chaperone, forming a stable complex in vivo with its protein target rhodopsin. EMBO J. 13, 4886–4895 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Ferreira, P. A., Nakayama, T. A., Pak, W. L. & Travis, G. H. Cyclophilin-related protein RanBP2 acts as chaperone for red/green opsin. Nature 383, 637–640 (1996).

    CAS  PubMed  Google Scholar 

  93. Tai, A. W., Chuang, J. Z., Bode, C., Wolfrum, U. & Sung, C. H. Rhodopsin's carboxy-terminal cytoplasmic tail acts as a membrane receptor for cytoplasmic dynein by binding to the dynein light chain Tctex-1. Cell 97, 877–887 (1999).

    CAS  PubMed  Google Scholar 

  94. Yeh, T. Y., Peretti, D., Chuang, J. Z., Rodriguez-Boulan, E. & Sung, C. H. Regulatory dissociation of Tctex-1 light chain from dynein complex is essential for the apical delivery of rhodopsin. Traffic 7, 1495–1502 (2006).

    CAS  PubMed  Google Scholar 

  95. Chen, C. et al. GEC1 interacts with the κ opioid receptor and enhances expression of the receptor. J. Biol. Chem. 281, 7983–7993 (2006).

    CAS  PubMed  Google Scholar 

  96. Chen, Y. et al. GEC1–κ opioid receptor binding involves hydrophobic interactions: GEC1 has chaperone-like effect. J. Biol. Chem. 284, 1673–1685 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Parent, A., Laroche, G., Hamelin, E. & Parent, J. L. RACK1 regulates the cell surface expression of the G protein-coupled receptor for thromboxane A2 . Traffic 9, 394–407 (2008).

    CAS  PubMed  Google Scholar 

  98. Bermak, J. C., Li, M., Bullock, C. & Zhou, Q. Y. Regulation of transport of the dopamine D1 receptor by a new membrane-associated ER protein. Nature Cell Biol. 3, 492–498 (2001).

    CAS  PubMed  Google Scholar 

  99. Leclerc, P. C. et al. A polyaromatic caveolin-binding-like motif in the cytoplasmic tail of the type 1 receptor for angiotensin II plays an important role in receptor trafficking and signaling. Endocrinology 143, 4702–4710 (2002).

    CAS  PubMed  Google Scholar 

  100. Wruck, C. J. et al. Regulation of transport of the angiotensin AT2 receptor by a novel membrane-associated Golgi protein. Arterioscler. Thromb. Vasc. Biol. 25, 57–64 (2005).

    CAS  PubMed  Google Scholar 

  101. Milojevic, T. et al. The ubiquitin-specific protease Usp4 regulates the cell surface level of the A2A receptor. Mol. Pharmacol. 69, 1083–1094 (2006).

    CAS  PubMed  Google Scholar 

  102. Bush, C. F. & Hall, R. A. Olfactory receptor trafficking to the plasma membrane. Cell. Mol. Life Sci. 65, 2289–2295 (2008).

    CAS  PubMed  Google Scholar 

  103. Dwyer, N. D., Troemel, E. R., Sengupta, P. & Bargmann, C. I. Odorant receptor localization to olfactory cilia is mediated by ODR-4, a novel membrane-associated protein. Cell 93, 455–466 (1998).

    CAS  PubMed  Google Scholar 

  104. Saito, H., Kubota, M., Roberts, R. W., Chi, Q. & Matsunami, H. RTP family members induce functional expression of mammalian odorant receptors. Cell 119, 679–691 (2004). The surface trafficking of olfactory receptors, the largest family of GPCRs, is found to be enhanced by two novel families of transmembrane proteins.

    CAS  PubMed  Google Scholar 

  105. Zhuang, H. & Matsunami, H. Synergism of accessory factors in functional expression of mammalian odorant receptors. J. Biol. Chem. 282, 15284–15293 (2007).

    CAS  PubMed  Google Scholar 

  106. Behrens, M. et al. Members of RTP and REEP gene families influence functional bitter taste receptor expression. J. Biol. Chem. 281, 20650–20659 (2006).

    CAS  PubMed  Google Scholar 

  107. Decaillot, F. M., Rozenfeld, R., Gupta, A. & Devi, L. A. Cell surface targeting of μ–δ opioid receptor heterodimers by RTP4. Proc. Natl Acad. Sci. USA 105, 16045–16050 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Loconto, J. et al. Functional expression of murine V2R pheromone receptors involves selective association with the M10 and M1 families of MHC class Ib molecules. Cell 112, 607–618 (2003).

    CAS  PubMed  Google Scholar 

  109. Metherell, L. A. et al. Mutations in MRAP, encoding a new interacting partner of the ACTH receptor, cause familial glucocorticoid deficiency type 2. Nature Genet. 37, 166–170 (2005). A disease gene is found to encode a GPCR-interacting protein that controls receptor surface expression.

    CAS  PubMed  Google Scholar 

  110. Roy., S., Rached, M. & Gallo-Payet, N. Differential regulation of the human adrenocorticotropin receptor (melanocortin-2 receptor (MC2R)) by human MC2R accessory protein isoforms α and β in isogenic human embryonic kidney 293 cells. Mol. Endocrinol. 21, 1656–1669 (2007).

    CAS  PubMed  Google Scholar 

  111. Sebag, J. A. & Hinkle, P. M. Melanocortin-2 receptor accessory protein MRAP forms antiparallel homodimers. Proc. Natl Acad. Sci. USA 104, 20244–20249 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Hinkle, P. M. & Sebag, J. A. Structure and function of the melanocortin2 receptor accessory protein (MRAP). Mol. Cell Endocrinol. 300, 25–31 (2009).

    CAS  PubMed  Google Scholar 

  113. Sebag, J. A. & Hinkle, P. M. Regions of melanocortin 2 (MC2) receptor accessory protein necessary for dual topology and MC2 receptor trafficking and signaling. J. Biol. Chem. 284, 610–618 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Whistler, J. L. et al. Modulation of postendocytic sorting of G protein-coupled receptors. Science 297, 615–620 (2002).

    CAS  PubMed  Google Scholar 

  115. Bartlett, S. E. et al. Dopamine responsiveness is regulated by targeted sorting of D2 receptors. Proc. Natl Acad. Sci. USA 102, 11521–11526 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Tappe-Theodor, A. et al. A molecular basis of analgesic tolerance to cannabinoids. J. Neurosci. 27, 4165–4177 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Martini, L. et al. Ligand-induced down-regulation of the cannabinoid 1 receptor is mediated by the G-protein-coupled receptor-associated sorting protein GASP1. FASEB J. 21, 802–811 (2007).

    CAS  PubMed  Google Scholar 

  118. Simonin, F., Karcher, P., Boeuf, J. J., Matifas, A. & Kieffer, B. L. Identification of a novel family of G protein-coupled receptor associated sorting proteins. J. Neurochem. 89, 766–775 (2004).

    CAS  PubMed  Google Scholar 

  119. Wang, Y., Zhou, Y., Szabo, K., Haft, C. R. & Trejo, J. Down-regulation of protease-activated receptor-1 is regulated by sorting nexin 1. Mol. Biol. Cell 13, 1965–1976 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Gullapalli, A., Wolfe, B. L., Griffin, C. T., Magnuson, T. & Trejo, J. An essential role for SNX1 in lysosomal sorting of protease-activated receptor-1: evidence for retromer-, Hrs-, and Tsg101-independent functions of sorting nexins. Mol. Biol. Cell 17, 1228–1238 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Heydorn, A. et al. A library of 7TM receptor C-terminal tails. Interactions with the proposed post-endocytic sorting proteins ERM-binding phosphoprotein 50 (EBP50), N-ethylmaleimide-sensitive factor (NSF), sorting nexin 1 (SNX1), and G protein-coupled receptor-associated sorting protein (GASP). J. Biol. Chem. 279, 54291–303 (2004).

    CAS  PubMed  Google Scholar 

  122. Cao, T. T., Deacon, H. W., Reczek, D., Bretscher, A. & von Zastrow, M. A kinase-regulated PDZ-domain interaction controls endocytic sorting of the β2-adrenergic receptor. Nature 401, 286–290 (1999). A GPCR-interacting protein is shown to control receptor recycling versus receptor sorting to lysosomes following endocytosis.

    CAS  PubMed  Google Scholar 

  123. Gage, R. M., Kim, K. A., Cao, T. T. & von Zastrow, M. A transplantable sorting signal that is sufficient to mediate rapid recycling of G protein-coupled receptors. J. Biol. Chem. 276, 44712–44720 (2001).

    CAS  PubMed  Google Scholar 

  124. Gage, R. M., Matveeva, E. A., Whiteheart, S. W. & von Zastrow, M. Type I PDZ ligands are sufficient to promote rapid recycling of G protein-coupled receptors independent of binding to N-ethylmaleimide-sensitive factor. J. Biol. Chem. 280, 3305–3313 (2005).

    CAS  PubMed  Google Scholar 

  125. Wang, B., Bisello, A., Yang, Y., Romero, G. G. & Friedman, P. A. NHERF1 regulates parathyroid hormone receptor membrane retention without affecting recycling. J. Biol. Chem. 282, 36214–36222 (2007).

    CAS  PubMed  Google Scholar 

  126. Ango, F. et al. Dendritic and axonal targeting of type 5 metabotropic glutamate receptor is regulated by homer1 proteins and neuronal excitation. J. Neurosci. 20, 8710–8716 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Das, S. S. & Banker, G. A. The role of protein interaction motifs in regulating the polarity and clustering of the metabotropic glutamate receptor mGluR1a. J. Neurosci. 26, 8115–8125 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Serge, A., Fourgeaud, L., Hemar, A. & Choquet, D. Receptor activation and homer differentially control the lateral mobility of metabotropic glutamate receptor 5 in the neuronal membrane. J. Neurosci. 22, 3910–3920 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Tu, J. C. et al. Coupling of mGluR/Homer and PSD-95 complexes by the Shank family of postsynaptic density proteins. Neuron 23, 583–592 (1999).

    CAS  PubMed  Google Scholar 

  130. Sala, C. et al. Regulation of dendritic spine morphology and synaptic function by Shank and Homer. Neuron 31, 115–130 (2001).

    CAS  PubMed  Google Scholar 

  131. Hayashi, M. K. et al. The postsynaptic density proteins Homer and Shank form a polymeric network structure. Cell 137, 159–171 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Tobaben, S., Sudhof, T. C. & Stahl, B. The G protein-coupled receptor CL1 interacts directly with proteins of the Shank family. J. Biol. Chem. 275, 36204–36210 (2000).

    CAS  PubMed  Google Scholar 

  133. Kreienkamp, H. J., Zitzer, H., Gundelfinger, E. D., Richter, D. & Bockers, T. M. The calcium-independent receptor for α-latrotoxin from human and rodent brains interacts with members of the ProSAP/SSTRIP/Shank family of multidomain proteins. J. Biol. Chem. 275, 32387–32390 (2000).

    CAS  PubMed  Google Scholar 

  134. Xia, Z., Gray, J. A., Compton-Toth, B. A. & Roth, B. L. A direct interaction of PSD-95 with 5-HT2A serotonin receptors regulates receptor trafficking and signal transduction. J. Biol. Chem. 278, 21901–21908 (2003).

    CAS  PubMed  Google Scholar 

  135. Xia, Z., Hufeisen, S. J., Gray, J. A. & Roth, B. L. The PDZ-binding domain is essential for the dendritic targeting of 5-HT2A serotonin receptors in cortical pyramidal neurons in vitro. Neuroscience 122, 907–920 (2003).

    CAS  PubMed  Google Scholar 

  136. Hu, L. A. et al. β1-adrenergic receptor association with PSD-95. Inhibition of receptor internalization and facilitation of β1-adrenergic receptor interaction with N-methyl-D-aspartate receptors. J. Biol. Chem. 275, 38659–38666 (2000).

    CAS  PubMed  Google Scholar 

  137. Topinka, J. R. & Bredt, D. S. N-terminal palmitoylation of PSD-95 regulates association with cell membranes and interaction with K+ channel Kv1.4. Neuron 20, 125–134 (1998).

    CAS  PubMed  Google Scholar 

  138. Xu, J. et al. β1-adrenergic receptor association with the synaptic scaffolding protein membrane-associated guanylate kinase inverted-2 (MAGI-2). Differential regulation of receptor internalization by MAGI-2 and PSD-95. J. Biol. Chem. 276, 41310–41317 (2001).

    CAS  PubMed  Google Scholar 

  139. Gavarini, S. et al. Opposite effects of PSD-95 and MPP3 PDZ proteins on serotonin 5-hydroxytryptamine2C receptor desensitization and membrane stability. Mol. Biol. Cell 17, 4619–4631 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Boudin, H. et al. Presynaptic clustering of mGluR7a requires the PICK1 PDZ domain binding site. Neuron 28, 485–497 (2000).

    CAS  PubMed  Google Scholar 

  141. Boudin, H. & Craig, A. M. Molecular determinants for PICK1 synaptic aggregation and mGluR7a receptor coclustering: role of the PDZ, coiled-coil, and acidic domains. J. Biol. Chem. 276, 30270–30276 (2001).

    CAS  PubMed  Google Scholar 

  142. Chen, Z., Hague, C., Hall, R. A. & Minneman, K. P. Syntrophins regulate α1D-adrenergic receptors through a PDZ domain-mediated interaction. J. Biol. Chem. 281, 12414–12420 (2006).

    CAS  PubMed  Google Scholar 

  143. Lyssand, J. S. et al. Blood pressure is regulated by an α1D-adrenergic receptor/dystrophin signalosome. J. Biol. Chem. 283, 18792–18800 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Liew, C. W. et al. Interaction of the human somatostatin receptor 3 with the multiple PDZ domain protein MUPP1 enables somatostatin to control permeability of epithelial tight junctions. FEBS Lett. 583, 49–54 (2009).

    CAS  PubMed  Google Scholar 

  145. Hay, D. L., Poyner, D. R. & Sexton, P. M. GPCR modulation by RAMPs. Pharmacol. Ther. 109, 173–197 (2006).

    CAS  PubMed  Google Scholar 

  146. McLatchie, L. M. et al. RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor. Nature 393, 333–339 (1998).

    CAS  PubMed  Google Scholar 

  147. Fraser, N. J. et al. The amino terminus of receptor activity modifying proteins is a critical determinant of glycosylation state and ligand binding of calcitonin receptor-like receptor. Mol. Pharmacol. 55, 1054–1059 (1999).

    CAS  PubMed  Google Scholar 

  148. Hilairet, S., Foord, S. M., Marshall, F. H. & Bouvier, M. Protein–protein interaction and not glycosylation determines the binding selectivity of heterodimers between the calcitonin receptor-like receptor and the receptor activity-modifying proteins. J. Biol. Chem. 276, 29575–29581 (2001).

    CAS  PubMed  Google Scholar 

  149. Christopoulos, G. et al. Multiple amylin receptors arise from receptor activity-modifying protein interaction with the calcitonin receptor gene product. Mol. Pharmacol. 56, 235–242 (1999).

    CAS  PubMed  Google Scholar 

  150. Tilakaratne, N., Christopoulos, G., Zumpe, E. T., Foord, S. M. & Sexton, P. M. Amylin receptor phenotypes derived from human calcitonin receptor/RAMP coexpression exhibit pharmacological differences dependent on receptor isoform and host cell environment. J. Pharmacol. Exp. Ther. 294, 61–72 (2000).

    CAS  PubMed  Google Scholar 

  151. Urban, J. D. et al. Functional selectivity and classical concepts of quantitative pharmacology. J. Pharmacol. Exp. Ther. 320, 1–13 (2007).

    CAS  PubMed  Google Scholar 

  152. Violin, J. D. & Lefkowitz, R. J. β-Arrestin-biased ligands at seven-transmembrane receptors. Trends Pharmacol. Sci. 28, 416–422 (2007).

    CAS  PubMed  Google Scholar 

  153. Ango, F. et al. Agonist-independent activation of metabotropic glutamate receptors by the intracellular protein Homer. Nature 411, 962–965 (2001).

    CAS  PubMed  Google Scholar 

  154. Ango, F. et al. Homer-dependent cell surface expression of metabotropic glutamate receptor type 5 in neurons. Mol. Cell. Neurosci. 20, 323–329 (2002).

    CAS  PubMed  Google Scholar 

  155. Becamel, C. et al. Interaction of serotonin 5-hydroxytryptamine type 2C receptors with PDZ10 of the multi-PDZ domain protein MUPP1. J. Biol. Chem. 276, 12974–12982 (2001).

    CAS  PubMed  Google Scholar 

  156. Zhang, C. S. et al. Knock-in mice lacking the PDZ-ligand motif of mGluR7a show impaired PKC-dependent autoinhibition of glutamate release, spatial working memory deficits, and increased susceptibility to pentylenetetrazol. J. Neurosci. 28, 8604–8614 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors' research is funded by the National Institutes of Health, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randy A. Hall.

Related links

Related links

FURTHER INFORMATION

Randy A. Hall's homepage

Glossary

Agonist

A molecule that binds to and stimulates a receptor to trigger a cellular response.

Clathrin-coated pit

An invaginated membrane structure involved in receptor endocytosis. It consists of a cluster of transmembrane receptors that are attached by adaptor proteins to the protein clathrin, on the cytosolic side of the membrane.

Second messenger

An intracellular signal, such as cAMP, diacylglycerol or inositol triphosphate, that is rapidly and transiently synthesized following receptor activation in order to further amplify the signal transduction cascade.

Heterologous cell

A cell that lacks endogenous expression of a gene of interest but is manipulated, for example by transfection or viral infection, to express the gene.

Familial glucocorticoid deficiency type 2

A rare, autosomal recessive disorder in which affected individuals are unresponsive to adrenocorticotropin owing to mutations in the gene encoding MRAP.

Postsynaptic density

A specialized postsynaptic compartment, highly enriched in various scaffold proteins and receptors, that is found at all asymmetric (usually glutamatergic) synapses in vertebrate central nervous systems.

Cortical pyramidal neuron

The predominant type of neuron in the neocortex. It is named after its triangular cell body.

Palmitoylation

Post-translational modification of a protein by the covalent attachment of a palmitate (a 16-carbon saturated fatty acid) to a cysteine residue through a thioester bond.

Dystrophin-associated glycoprotein complex

A series of protein subcomplexes, including complexes of the adaptor protein dystrophin, cytoskeletal proteins, the sarcoglycan complex and the α,β-dystroglycan complex, which together are required to link the cytoskeleton to the extracelluar matrix in muscle cells.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ritter, S., Hall, R. Fine-tuning of GPCR activity by receptor-interacting proteins. Nat Rev Mol Cell Biol 10, 819–830 (2009). https://doi.org/10.1038/nrm2803

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2803

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing