Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

The molecular epidemiology of pain: a new discipline for drug discovery

Abstract

Recent candidate gene studies have identified and replicated the first associations between several common polymorphisms and pain severity in humans. Moreover, human studies in twins suggest high heritability for responses to experimental pain stimuli. Human genome-wide association studies of pain phenotypes might identify novel analgesic targets, help to prioritize research among current targets, and increase the likelihood of success for analgesic candidates emerging from animal studies. However, clinical research in pain has largely focused on small neurophysiology-based studies, so expansion of epidemiological understanding will be essential to the success of genetic or proteomic dissection of complex pain disorders. This Perspective outlines how methods of molecular epidemiology, proved effective in the study of other diseases, can enhance the returns from human genomic studies and expedite the development of new drugs to prevent or treat pain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Association of COMT haplotypes with experimental pain sensitivity and with rate of metabolism of catecholamines.
Figure 2: Association of GCH1 haplotypes with human chronic spinal nerve root pain, experimental pain and synthesis of biopterin.
Figure 3: Required number of cases and controls for whole-genome association study.
Figure 4: Models of back pain and headache pain progression.
Figure 5: Neural pathways of pain.

Similar content being viewed by others

References

  1. Schappert, S. M., National Ambulatory Medical Care Survey: 1992 summary. Adv. Data 253, 1–20 (1994).

    Google Scholar 

  2. Stewart, W. F. et al. Lost productive time and cost due to common pain conditions in the US workforce. jama 290, 2443–2454 (2003).

    CAS  PubMed  Google Scholar 

  3. Willis, W. D., Jr . The somatosensory system, with emphasis on structures important for pain. Brain Res. Rev. 55, 297–313 (2007).

    PubMed  Google Scholar 

  4. Negus, S. S. et al. Preclinical assessment of candidate analgesic drugs: recent advances and future challenges. J. Pharmacol. Exp. Ther. 319, 507–514 (2006).

    CAS  PubMed  Google Scholar 

  5. Kalueff, A. V., Wheaton, M. & D. L. Murphy, What's wrong with my mouse model? Advances and strategies in animal modeling of anxiety and depression. Behav. Brain Res. 179, 1–18 (2007).

    CAS  PubMed  Google Scholar 

  6. Powell, C. M. & Miyakawa, T. Schizophrenia-relevant behavioral testing in rodent models: a uniquely human disorder? Biol. Psychiatry 59, 1198–1207 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Kontinen, V. K., Meert, T. F. in Proc. 10th World Congress Pain 1–937 (eds Dostrovsky, J. O., Carr, D. B. & Koltzenburg, M.) (IASP Press, Seattle, 2003).

    Google Scholar 

  8. Schug, S. A. et al. Neuraxial drug administration: a review of treatment options for anaesthesia and analgesia. CNS Drugs 20, 917–933 (2006).

    CAS  PubMed  Google Scholar 

  9. Belfer, I. et al. Candidate gene studies of human pain mechanisms: methods for optimizing choice of polymorphisms and sample size. Anesthesiology 100, 1562–1572 (2004).

    PubMed  Google Scholar 

  10. Hill, R. NK1 (substance P) receptor antagonists — why are they not analgesic in humans? Trends Pharmacol. Sci. 21, 244–246 (2000).

    CAS  PubMed  Google Scholar 

  11. Wallace, M. S. et al. A multicenter, double-blind, randomized, placebo-controlled crossover evaluation of a short course of 4030W92 in patients with chronic neuropathic pain. J. Pain 3, 227–233 (2002).

    PubMed  Google Scholar 

  12. Wallace, M. S. et al. A randomized, double-blind, placebo-controlled trial of a glycine antagonist in neuropathic pain. Neurology 59, 1694–1700 (2002).

    CAS  PubMed  Google Scholar 

  13. Manolio, T. A., Bailey-Wilson, J. E. & Collins, F. S. Genes, environment and the value of prospective cohort studies. Nature Rev. Genet. 7, 812–820 (2006).

    CAS  PubMed  Google Scholar 

  14. Gudmundsson, J. et al. Common sequence variants on 2p15 and Xp11.22 confer susceptibility to prostate cancer. Nature Genet. 40, 281–283 (2008).

    CAS  PubMed  Google Scholar 

  15. Lusis, A. J. & Pajukanta, P. A treasure trove for lipoprotein biology. Nature Genet. 40, 129–130 (2008).

    CAS  PubMed  Google Scholar 

  16. Diatchenko, L. et al. Genetic architecture of human pain perception. Trends Genet. 23, 605–613 (2007).

    CAS  PubMed  Google Scholar 

  17. Mogil, J. S. et al. Heritability of nociception I: responses of 11 inbred mouse strains on 12 measures of nociception. Pain 80, 67–82 (1999).

    CAS  PubMed  Google Scholar 

  18. Lariviere, W. R. et al. Heritability of nociception. III. Genetic relationships among commonly used assays of nociception and hypersensitivity. Pain 97, 75–86 (2002).

    PubMed  Google Scholar 

  19. Devor, M. & P. Raber, Heritability of symptoms in an experimental model of neuropathic pain. Pain 42, 51–67 (1990).

    CAS  PubMed  Google Scholar 

  20. Bengtsson, B. & Thorson, J. Back pain: a study of twins. Acta Genet. Med. Gemellol. (Roma) 40, 83–90 (1991).

    CAS  PubMed  Google Scholar 

  21. Treloar, S. A., Martin, N. G. & Heath, A. C. Longitudinal genetic analysis of menstrual flow, pain, and limitation in a sample of Australian twins. Behav. Genet. 28, 107–116 (1998).

    CAS  PubMed  Google Scholar 

  22. Morris-Yates, A. et al. Evidence of a genetic contribution to functional bowel disorder. Am. J. Gastroenterol. 93, 1311–1317 (1998).

    CAS  PubMed  Google Scholar 

  23. Battie, M. C. et al. Heritability of low back pain and the role of disc degeneration. Pain 131, 272–280 (2007).

    PubMed  Google Scholar 

  24. Norbury, T. A. et al. Heritability of responses to painful stimuli in women: a classical twin study. Brain 130, 3041–3049 (2007).

    PubMed  Google Scholar 

  25. Nielsen, C. S. et al. Individual differences in pain sensitivity: genetic and environmental contributions. Pain 136, 21–29 (2007).

    PubMed  Google Scholar 

  26. Bhalang, K. et al. Associations among four modalities of experimental pain in women. J. Pain 6, 604–611 (2005).

    PubMed  Google Scholar 

  27. Stewart, W. F. et al. Familial risk of migraine: variation by proband age at onset and headache severity. Neurology 66, 344–348 (2006).

    CAS  PubMed  Google Scholar 

  28. Stewart, W. F. et al. Familial risk of migraine: a population-based study. Ann. Neurol. 41, 166–172 (1997).

    CAS  PubMed  Google Scholar 

  29. Mulder, E. J. et al. Genetic and environmental influences on migraine: a twin study across six countries. Twin Res. 6, 422–431 (2003).

    PubMed  Google Scholar 

  30. Russell, M. B., Iselius, L. & Olesen, J. Migraine without aura and migraine with aura are inherited disorders. Cephalalgia 16, 305–309 (1996).

    CAS  PubMed  Google Scholar 

  31. Russell, M. B. et al. Migraine without aura and migraine with aura are distinct disorders. A population-based twin survey. Headache 42, 332–336 (2002).

    PubMed  Google Scholar 

  32. Max, M., Portenoy, R. K. & Laska, E. M. The Design of Analgesic Clinical Trials (Advances in Pain Research and Therapy) Vol. 18 (Raven Press, New York, 1991).

    Google Scholar 

  33. Dawson, E. G. et al. Low back pain recollection versus concurrent accounts: outcomes analysis. Spine 27, 984–993; discussion 994 (2002).

    PubMed  Google Scholar 

  34. Zubieta, J. K. et al. COMT Val158Met genotype affects μ-opioid neurotransmitter responses to a pain stressor. Science 299, 1240–1243 (2003).

    CAS  PubMed  Google Scholar 

  35. Diatchenko, L. et al. Genetic basis for individual variations in pain perception and the development of a chronic pain condition. Hum. Mol. Genet. 14, 135–143 (2005).

    CAS  PubMed  Google Scholar 

  36. Armero, P. et al. COMT (Val158Met) polymorphism is not associated to neuropathic pain in a Spanish population. Eur. J. Pain 9, 229–232 (2005).

    CAS  PubMed  Google Scholar 

  37. Hagen, K. et al. No association between chronic musculoskeletal complaints and Val158Met polymorphism in the catechol-O-methyltransferase gene. The HUNT study. BMC Musculoskelet. Disord. 7, 40 (2006).

    PubMed  PubMed Central  Google Scholar 

  38. Slade, G. D. et al. Influence of psychological factors on risk of temporomandibular disorders. J. Dent. Res. 86, 1120–1125 (2007).

    CAS  PubMed  Google Scholar 

  39. Nackley, A. G. et al. Catechol-O-methyltransferase inhibition increases pain sensitivity through activation of both β2- and β3-adrenergic receptors. Pain 128, 199–208 (2007).

    CAS  PubMed  Google Scholar 

  40. Nackley, A. G. et al. Human catechol-O-methyltransferase haplotypes modulate protein expression by altering mRNA secondary structure. Science 314, 1930–1933 (2006).

    CAS  PubMed  Google Scholar 

  41. Tegeder, I. et al. GTP cyclohydrolase and tetrahydrobiopterin regulate pain sensitivity and persistence. Nature Med. 12, 1269–1277 (2006).

    CAS  PubMed  Google Scholar 

  42. Tegeder, I. et al. Reduced hyperalgesia in homozygous carriers of a GTP cyclohydrolase 1 haplotype. Eur. J. Pain 26 Mar 2008 (doi:10.1016/j.ejpain.2008.02.004).

    CAS  PubMed  Google Scholar 

  43. Kim, H. & Dionne, R. A. Lack of influence of GTP cyclohydrolase gene (GCH1) variations on pain sensitivity in humans. Mol. Pain 3, 6 (2007).

    PubMed  PubMed Central  Google Scholar 

  44. Risch, N. & Merikangas, K. The future of genetic studies of complex human diseases. Science 273, 1516–1517 (1996).

    CAS  PubMed  Google Scholar 

  45. Zondervan, K. T. & Cardon, L. R. Designing candidate gene and genome-wide case-control association studies. Nature Protoc. 2, 2492–2501 (2007).

    CAS  Google Scholar 

  46. Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661–678 (2007).

  47. Luca, D. et al. On the use of general control samples for genome-wide association studies: genetic matching highlights causal variants. Am. J. Hum. Genet. 82, 453–463 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Cardon, L. R. & Palmer, L. J. Population stratification and spurious allelic association. Lancet 361, 598–604 (2003).

    PubMed  Google Scholar 

  49. Cella, D. et al. The patient-reported outcomes measurement information system (PROMIS): progress of an NIH roadmap cooperative group during its first two years. Med. Care 45 (5 Suppl. 1), S3–S11 (2007).

    PubMed  PubMed Central  Google Scholar 

  50. Reginster, J. Y. The prevalence and burden of arthritis. Rheumatology (Oxford) 41 (Supp. 1), 3–6 (2002).

    Google Scholar 

  51. Scher, A. I. et al. Prevalence of frequent headache in a population sample. Headache 38, 497–506 (1998).

    CAS  PubMed  Google Scholar 

  52. Woolf, C. J. & Salter, M. W. Neuronal plasticity: increasing the gain in pain. Science 288, 1765–1769 (2000).

    CAS  PubMed  Google Scholar 

  53. Barden, J. et al. Relative efficacy of oral analgesics after third molar extraction. Br. Dent J. 197, 407–411; discussion 397 (2004).

    CAS  PubMed  Google Scholar 

  54. Malan, T. P., Jr et al. Parecoxib sodium, a parenteral cyclooxygenase 2 selective inhibitor, improves morphine analgesia and is opioid-sparing following total hip arthroplasty. Anesthesiology 98, 950–956 (2003).

    CAS  PubMed  Google Scholar 

  55. Pollak, R. et al. Analgesic efficacy of valdecoxib for acute postoperative pain after bunionectomy. J. Am. Podiatr. Med. Assoc. 96, 393–407 (2006).

    PubMed  Google Scholar 

  56. Kehlet, H., Jensen, T. S. & Woolf, C. J. Persistent postsurgical pain: risk factors and prevention. Lancet 367, 1618–1625 (2006).

    PubMed  Google Scholar 

  57. Committee on Biological Markers of the National Research Council. Biological markers in environmental health research. Environ. Health Perspect. 74, 3–9 (1987).

  58. Von Korff, M. et al. Grading the severity of chronic pain. Pain 50, 133–149 (1992).

    CAS  PubMed  Google Scholar 

  59. Dunn, K. M. & Croft, P. R. The importance of symptom duration in determining prognosis. Pain 121, 126–132 (2006).

    PubMed  Google Scholar 

  60. Von Korff, M. & Miglioretti, D. L. A prognostic approach to defining chronic pain. Pain 117, 304–313 (2005).

    PubMed  Google Scholar 

  61. Sullivan, M. J. et al. Stage of chronicity and treatment response in patients with musculoskeletal injuries and concurrent symptoms of depression. Pain 135, 151–159 (2008).

    PubMed  Google Scholar 

  62. Scher, A. I., Lipton, R. B. & Stewart, W. Risk factors for chronic daily headache. Curr. Pain Headache Rep. 6, 486–491 (2002).

    PubMed  Google Scholar 

  63. Scher, A. I., Stewart, W. F. & Lipton, R. B. Caffeine as a risk factor for chronic daily headache: a population-based study. Neurology 63, 2022–2027 (2004).

    CAS  PubMed  Google Scholar 

  64. Bigal, M. E. et al. Patterns of medical diagnosis and treatment of migraine and probable migraine in a health plan. Cephalalgia 26, 43–49 (2006).

    CAS  PubMed  Google Scholar 

  65. Kolodner, K. et al. Pharmacy and medical claims data identified migraine sufferers with high specificity but modest sensitivity. J. Clin. Epidemiol. 57, 962–972 (2004).

    PubMed  Google Scholar 

  66. Lipton, R. B. et al. Patterns of health care utilization for migraine in England and in the United States. Neurology 60, 441–448 (2003).

    CAS  PubMed  Google Scholar 

  67. Engel, C. C., von Korff, M. & Katon, W. J. Back pain in primary care: predictors of high health-care costs. Pain 65, 197–204 (1996).

    CAS  PubMed  Google Scholar 

  68. Saunders, K. W. et al. Prediction of physician visits and prescription medicine use for back pain. Pain 83, 369–377 (1999).

    CAS  PubMed  Google Scholar 

  69. Lipton, R. B. et al. Prevalence and burden of migraine in the United States: data from the American Migraine Study II. Headache 41, 646–657 (2001).

    CAS  PubMed  Google Scholar 

  70. Bellamy, N., Campbell, J. & Syrotuik, J. Comparative study of self-rating pain scales in rheumatoid arthritis patients. Curr. Med. Res. Opin. 15, 121–127 (1999).

    CAS  PubMed  Google Scholar 

  71. Bellamy, N., Campbell, J. & Syrotuik, J. Comparative study of self-rating pain scales in osteoarthritis patients. Curr. Med. Res. Opin. 15, 113–119 (1999).

    CAS  PubMed  Google Scholar 

  72. Herr, K. A. et al. Pain intensity assessment in older adults: use of experimental pain to compare psychometric properties and usability of selected pain scales with younger adults. Clin. J. Pain 20, 207–219 (2004).

    PubMed  Google Scholar 

  73. Rolke, R. et al. Quantitative sensory testing in the German research network on neuropathic pain (DFNS): standardized protocol and reference values. Pain 123, 231–243 (2006).

    CAS  PubMed  Google Scholar 

  74. Rowbotham, M. C. & Petersen, K. L. Zoster-associated pain and neural dysfunction. Pain 93, 1–5 (2001).

    CAS  PubMed  Google Scholar 

  75. Tella, P. K. et al. in Proc. 11th World Congress Pain. 1–882 (eds Flor, H., Kalso, E. & Dostrovsky, J. O.) (IASP Press, Seattle, 2006).

    Google Scholar 

  76. Edwards, B. J. et al. Power and sample size calculations in the presence of phenotype errors for case/control genetic association studies. BMC Genet. 6, 18 (2005).

    PubMed  PubMed Central  Google Scholar 

  77. Elliott, P., Peakman, T. C. & UK Biobank. The UK Biobank sample handling and storage protocol for the collection, processing and archiving of human blood and urine. Int. J. Epidemiol. 37, 234–244 (2008).

    PubMed  Google Scholar 

  78. Rothman, N. et al. Misclassification of genetic susceptibility biomarkers: implications for case-control studies and cross-population comparisons. Cancer Epidemiol. Biomarkers Prev. 2, 299–303 (1993).

    CAS  PubMed  Google Scholar 

  79. Turk, D. C. et al. Core outcome domains for chronic pain clinical trials: IMMPACT recommendations. Pain 106, 337–345 (2003).

    PubMed  Google Scholar 

  80. Bernard, J. F., Peschanski, M. & Besson, J. M. A possible spino (trigemino)–ponto–amygdaloid pathway for pain. Neurosci. Lett. 100, 83–88 (1989).

    CAS  PubMed  Google Scholar 

  81. Burstein, R., Cliffer, K. D. & Giesler, G. J. Jr. Direct somatosensory projections from the spinal cord to the hypothalamus and telencephalon. J. Neurosci. 7, 4159–4164 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Cechetto, D. F., Standaert, D. G. & Saper, C. B. Spinal and trigeminal dorsal horn projections to the parabrachial nucleus in the rat. J. Comp. Neurol. 240, 153–160 (1985).

    CAS  PubMed  Google Scholar 

  83. Hylden, J. L., Anton, F. & Nahin, R. L. Spinal lamina I projection neurons in the rat: collateral innervation of parabrachial area and thalamus. Neuroscience 28, 27–37 (1989).

    CAS  PubMed  Google Scholar 

  84. Apkarian, A. V. et al. Human brain mechanisms of pain perception and regulation in health and disease. Eur. J. Pain 9, 463–484 (2005).

    PubMed  Google Scholar 

  85. Talbot, J. D. et al. Multiple representations of pain in human cerebral cortex. Science 251, 1355–1358 (1991).

    CAS  PubMed  Google Scholar 

  86. Bair, M. J. et al. Impact of pain on depression treatment response in primary care. Psychosom. Med. 66, 17–22 (2004).

    PubMed  Google Scholar 

  87. Braz, J. M. et al. Parallel “pain” pathways arise from subpopulations of primary afferent nociceptor. Neuron 47, 787–793 (2005).

    CAS  PubMed  Google Scholar 

  88. Ikeda, R. et al. NMDA receptor-independent synaptic plasticity in the central amygdala in the rat model of neuropathic pain. Pain 127, 161–172 (2007).

    CAS  PubMed  Google Scholar 

  89. Neugebauer, V. et al. The amygdala and persistent pain. Neuroscientist 10, 221–234 (2004).

    PubMed  Google Scholar 

  90. Max, M. B. et al. A clinical genetic method to identify mechanisms by which pain causes depression and anxiety. Mol. Pain 2, 14 (2006).

    PubMed  PubMed Central  Google Scholar 

  91. Mishra, B. K. et al. Do motor control genes contribute to interindividual variability in decreased movement in patients with pain? Mol. Pain 3, 20 (2007).

    PubMed  PubMed Central  Google Scholar 

  92. Taylor, D. J. et al. Comorbidity of chronic insomnia with medical problems. Sleep 30, 213–218 (2007).

    PubMed  Google Scholar 

  93. Smith, M. T. & Haythornthwaite, J. A. How do sleep disturbance and chronic pain inter-relate? Insights from the longitudinal and cognitive–behavioral clinical trials literature. Sleep Med. Rev. 8, 119–132 (2004).

    PubMed  Google Scholar 

  94. Palesh, O. G. et al. A longitudinal study of depression, pain, and stress as predictors of sleep disturbance among women with metastatic breast cancer. Biol. Psychol. 75, 37–44 (2007).

    PubMed  Google Scholar 

  95. Karp, J. F. et al. The relationship between pain and mental flexibility in older adult pain clinic patients. Pain Med. 7, 444–452 (2006).

    PubMed  Google Scholar 

  96. Apkarian, A. V. et al. Chronic pain patients are impaired on an emotional decision-making task. Pain 108, 129–136 (2004).

    PubMed  Google Scholar 

  97. Apkarian, A. V. et al. Chronic back pain is associated with decreased prefrontal and thalamic gray matter density. J. Neurosci. 24, 10410–10415 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Weiner, D. K. et al. The relationship between pain, neuropsychological performance, and physical function in community-dwelling older adults with chronic low back pain. Pain Med. 7, 60–70 (2006).

    PubMed  Google Scholar 

  99. Stewart, W. F. et al. Lost productive work time costs from health conditions in the United States: results from the American Productivity Audit. J. Occup. Environ. Med. 45, 1234–1246 (2003).

    PubMed  Google Scholar 

  100. Bradshaw, D. H., Nakamura, Y. & Chapman, C. R. National Institutes of Health grant awards for pain, nausea, and dyspnea research: an assessment of funding patterns in 2003. J. Pain 6, 277–293 (2005).

    PubMed  Google Scholar 

  101. American Academy of Family Physicians. Facts About Family Practice. Kansas City, Mo; American Academy of Family Physicians (1987).

  102. Fioramonti, J. & Gebhart, G. F. In vivo and transgenic animal models used to study visceral hypersensitivity. Neurogastroenterol. Motil. 19 (Suppl. 1), 20–28 (2007).

    CAS  PubMed  Google Scholar 

  103. Bartfai, T. & Lees, G. V. Drug Discovery: From Bedside to Wall Street. 1–328 (Academic Press, Burlington, MA, 2006).

    Google Scholar 

  104. McMahon, S. & Koltzenburg, M. Wall and Melzack's Textbook of Pain. 5th edn (Elsevier Churchill Livingstone, London, 2006).

    Google Scholar 

  105. Campbell, J. N. & Meyer, R. A. Mechanisms of neuropathic pain. Neuron 52, 77–92 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Kroenke, K. Physical symptom disorder: a simpler diagnostic category for somatization-spectrum conditions. J. Psychosom. Res. 60, 335–339 (2006).

    PubMed  Google Scholar 

  107. Gracely, R. H. et al. Functional magnetic resonance imaging evidence of augmented pain processing in fibromyalgia. Arthritis Rheum. 46, 1333–1343 (2002).

    PubMed  Google Scholar 

  108. Price, D. D. et al. Peripheral and central contributions to hyperalgesia in irritable bowel syndrome. J. Pain 7, 529–535 (2006).

    PubMed  Google Scholar 

  109. Katon, W., Sullivan, M. & Walker, E. Medical symptoms without identified pathology: relationship to psychiatric disorders, childhood and adult trauma, and personality traits. Ann. Intern. Med. 134, 917–925 (2001).

    CAS  PubMed  Google Scholar 

  110. Solovieva, S. et al. Intervertebral disc degeneration in relation to the COL9A3 and the IL-1ss gene polymorphisms. Eur. Spine J. 15, 613–619 (2006).

    PubMed  Google Scholar 

  111. Roeder, K., Devlin, B. & Wasserman, L. Improving power in genome-wide association studies: weights tip the scale. Genet. Epidemiol. 31, 741–747 (2007).

    PubMed  Google Scholar 

  112. Scott, L. J. et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 316, 1341–1345 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Costigan, M. et al. Replicate high-density rat genome oligonucleotide microarrays reveal hundreds of regulated genes in the dorsal root ganglion after peripheral nerve injury. BMC Neurosci. 3, 16 (2002).

    PubMed  PubMed Central  Google Scholar 

  114. Lacroix-Fralish, M. L., Ledoux, J. B. & Mogil, J. S. The Pain Genes Database: an interactive web browser of pain-related transgenic knockout studies. Pain 131, 3.e1–3.e4 (2007).

    Google Scholar 

  115. Wang, K., Li, M. & Bucan, M. Pathway-based approaches for analysis of genomewide association studies. Am. J. Hum. Genet. 81, 1278–1283 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Begg, A., Drummond, G. & Tiplady, B. Assessment of postsurgical recovery after discharge using a pen computer diary. Anaesthesia 58, 1101–1105 (2003).

    CAS  PubMed  Google Scholar 

  117. Peters, M. L. et al. Electronic diary assessment of pain, disability and psychological adaptation in patients differing in duration of pain. Pain 84, 181–192 (2000).

    CAS  PubMed  Google Scholar 

  118. Roelofs, J. et al. Electronic diary assessment of pain-related fear, attention to pain, and pain intensity in chronic low back pain patients. Pain 112, 335–342 (2004).

    PubMed  Google Scholar 

  119. Stone, A. A. et al. Intensive momentary reporting of pain with an electronic diary: reactivity, compliance, and patient satisfaction. Pain 104, 343–351 (2003).

    PubMed  Google Scholar 

  120. Bigal, M. E. et al. Body mass index and episodic headaches: a population-based study. Arch. Intern. Med. 167, 1964–1970 (2007).

    PubMed  Google Scholar 

  121. Peterlin, B. L. et al. Migraine and adiponectin: is there a connection? Cephalalgia 27, 435–446 (2007).

    CAS  PubMed  Google Scholar 

  122. Burstein, R. Somatosensory and visceral input to the hypothalamus and limbic system. Prog. Brain Res. 107, 257–267 (1996).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank D. Goldman and his colleagues in the Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism (NIAAA), for generous mentorship, training and collaboration. A. Kingman, S. Diehl, M. Devor, J. Mogil, W. Lariviere and Z. Seltzer for advice and encouragement. Also, I. Belfer, T. Wu, S. Atlas, C. Woolf, M. Costigan, W. Maixner, L. Diatchenko, R. Fillingim and the many other collaborators in the studies described above. M.B.M.'s contribution to the scientific reports cited in this work was funded by a National Institute of Dental of Craniofacial Research intramural grant ZO1 DE00366, NIAAA Intramural Grant Z01 AA000301, and the Comprehensive Neuroscience Program Grant USUHS G192BR-C4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitchell B. Max.

Ethics declarations

Competing interests

M.B.M. is co-inventor on a patent for the use of KCNS1 and GCH1 genotypes as a diagnostic test, which has been licensed by Solace Pharmaceuticals. The genes and company are mentioned in the article. No income is received or projected in the near or medium future.

Supplementary information

Supplementary information S1 (box)

A historical explanation for the relative neglect of pain epidemiology, genetics and visceral pain (PDF 120 kb)

Related links

Related links

FURTHER INFORMATION

Solace Pharmaceuticals

Rights and permissions

Reprints and permissions

About this article

Cite this article

Max, M., Stewart, W. The molecular epidemiology of pain: a new discipline for drug discovery. Nat Rev Drug Discov 7, 647–658 (2008). https://doi.org/10.1038/nrd2595

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd2595

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing