Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Drug research: myths, hype and reality

Abstract

Lack of success with early combinatorial chemistry and high-throughput screening approaches resulted from inappropriate compound selection. We are now aware that screening compounds should be either 'lead-like' or 'drug-like' and have the potential to be orally available. However, there is a growing tendency to misuse such terms and to overestimate their importance, and to overemphasize ADME problems in clinical failure. Sometimes, this goes hand-in-hand with an uncritical application of high-throughput in silico methods. Structure-based and computer-aided approaches can only be as good as the medicinal chemistry they are based on. The search for new drugs, especially in lead optimization, is an evolutionary process that is only likely to be successful if new methods merge with classical medicinal chemistry knowledge.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reasons for failure in drug development.

Similar content being viewed by others

References

  1. Horrobin, D. F. Modern biomedical research: an internally self-consistent universe with little contact with medical reality? Nature Rev. Drug Discov. 2, 151–154 (2003).

    Article  CAS  Google Scholar 

  2. Drews, J. Strategic trends in the drug industry. Drug Discov. Today 8, 411–420 (2003).

    Article  PubMed  Google Scholar 

  3. Hopkins, A. L. & Groom, C. R. The druggable genome. Nature Rev. Drug Discov. 1, 727–730 (2002).

    Article  CAS  Google Scholar 

  4. Lahana, R. How many leads from HTS? Drug Discov. Today 4, 447–448 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Lipinski, C. A., Lombardo F., Dominy, B. W. & Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Del. Rev. 23, 3–25 (1997).

    Article  CAS  Google Scholar 

  6. Ertl, P., Rohde, B. & Selzer, P. Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J. Med. Chem. 43, 3714–3717 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Cruciani, G., Pastor, M. & Guba, W. VolSurf: a new tool for the pharmacokinetic optimization of lead compounds. Eur. J. Pharm. Sci. 11 (Suppl. 2) S29–S39 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Kelder, J., Grootenhuis, P. D., Bayada, D. M., Delbressine, L. P. & Ploemen, J. P. Polar molecular surface as a dominating determinant for oral absorption and brain penetration of drugs. Pharm. Res. 16, 1514–1519 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Bergström, C. A. S. et al. Absorption classification of oral drugs based on molecular surface properties. J. Med. Chem. 46, 558–570 (2003).

    Article  PubMed  Google Scholar 

  10. Veber, D. F. et al. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 45, 2615–2623 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Wenlock, M. C., Austin, R. P., Barton, P., Davis, A. M. & Leeson, P. D. A comparison of physicochemical property profiles of development and marketed oral drugs. J. Med. Chem. 46, 1250–1256 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Prentis, R. A., Lis, Y. & Walker, S. R. Pharmaceutical innovation by the seven UK-owned pharmaceutical companies (1964–1985). Br. J. Clin. Pharmacol. 25, 387–396 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kennedy, T. Managing the drug discovery/development interface. Drug Discov. Today 2, 436–444 (1997).

    Article  Google Scholar 

  14. van de Waterbeemd, H. & Gifford, E. ADMET in silico modelling: towards prediction paradise? Nature Rev. Drug Discov. 2, 192–204 (2003).

    CAS  Google Scholar 

  15. Lipinski, C. A. Drug-like properties and the causes of poor solubility and poor permeability. J. Pharmacol. Toxicol. Methods 44, 235–249 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Ajay, A., Walters, W. P. & Murcko, M. A. Can we learn to distinguish between 'drug-like' and 'nondrug-like' molecules? J. Med. Chem. 41, 3314–3324 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Sadowski, J. & Kubinyi, H. A scoring scheme for discriminating between drugs and nondrugs. J. Med. Chem. 41, 3325–3329 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Teague, S. J., Davis, A. M., Leeson, P. D. & Oprea, T. The design of leadlike combinatorial libraries. Angew. Chem. Int. Ed. 38, 3743–3748 (1999).

    Article  CAS  Google Scholar 

  19. Oprea, T. I., Davis, A. M., Teague, S. J. & Leeson, P. D. Is there a difference between leads and drugs? A historical perspective. J. Chem. Inf. Comput. Sci. 41, 1308–1316 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Proudfoot, J. R. Drugs, leads, and drug-likeness: an analysis of some recently launched drugs. Bioorg. Med. Chem. Lett. 12, 1647–1650 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Hann, M. M., Leach, A. R. & Harper, G. Molecular complexity and its impact on the probability of finding leads for drug discovery. J. Chem. Inf. Comput. Sci. 41, 856–864 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Carr, R. & Hann, M. The right road to drug discovery? Fragment-based screening casts doubt on the Lipinski route. Modern Drug Discov. April, 45–48 (2002)

  23. Lommerse, J. P. M., Price, S. L. & Taylor, R. Hydrogen bonding of carbonyl, ether, and ester oxygen atoms with alkanol hydroxyl groups. J. Comput. Chem. 18, 757–774 (1997).

    Article  CAS  Google Scholar 

  24. Böhm, H. -J., Brode, S., Hesse, U. & Klebe, G. Oxygen and nitrogen in competitive situations: which is the hydrogen-bond acceptor? Chem. Eur. J. 2, 1509–1513 (1996).

    Article  Google Scholar 

  25. Kubinyi, H. in Pharmacokinetic Optimization in Drug Research: Biological, Physicochemical, and Computational Strategies (eds Testa, B., van de Waterbeemd, H., Folkers, G. & Guy, R.) 513–524 (Helvetica Chimica Acta and Wiley-VCH, Zurich, 2001).

    Book  Google Scholar 

  26. Sneader, W. Drug Prototypes and Their Exploitation. (John Wiley & Sons, Chichester, 1996).

    Google Scholar 

  27. Wermuth, C. G. The Practice of Medicinal Chemistry. (Academic, London, 1996).

    Google Scholar 

  28. Watson, J. D. The Double Helix: A Personal Account of the Discovery of the Structure of DNA. (Atheneum, New York, 1968).

    Google Scholar 

  29. Watson, J. D., with Berry, A. DNA. The Secret of Life. (William Heinemann, London, 2003).

    Google Scholar 

  30. Finding the flaws [online] (cited May 2003) <http://www.phy.cam.ac.uk/camphy/dna/dna13_1.htm> (2003).

  31. A working model! [online] (cited May 2003) <http://www.phy.cam.ac.uk/camphy/dna/dna14_1.htm> (2003).

Download references

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

LocusLink

BCR

ABL

FURTHER INFORMATION

Cambridge Crystallographic Data Centre

Hugo Kubinyi's website

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kubinyi, H. Drug research: myths, hype and reality. Nat Rev Drug Discov 2, 665–668 (2003). https://doi.org/10.1038/nrd1156

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd1156

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing