Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Whole-brain radiation therapy in breast cancer patients with brain metastases

This article has been updated

Abstract

Over the past 10 years, improving the outcome of breast cancer patients with brain metastases has become an important challenge. The suboptimal results of whole-brain radiation therapy (WBRT) in these patients have led to the development of irradiation modalities with new technical and biological approaches. By ensuring better sparing of critical organs such as the hippocampus, highly conformal irradiation therapy may partially preserve long-term neurocognitive functions. An additional radiation boost to the tumor bed improves local control. Radiosensitizing agents and radioprotectors that modify response to radiation have also been designed to improve the efficacy of treatment or prevent neurological toxicity. This Review outlines the current strategies and novel developments in WBRT, with a particular focus on new irradiation modalities and experiences of radiosensitization.

Key Points

  • Whole-brain radiation therapy remains the standard treatment for breast cancer patients with four or more brain metastases

  • Age, number of brain metastases, controlled primary tumor, and performance status are important prognostic factors; molecular features should also be considered for predicting prognosis in patients with breast cancer

  • Delivering a radiation boost to the tumor bed could improve local control in selected patients, but improvements in overall survival have not been established

  • Intensity-modulated radiation therapy allows sparing of critical organs, such as the hippocampus, but its benefits have not yet been validated

  • Undifferentiated chemoradiation approaches have shown no conclusive benefit, but innovative strategies that target specific molecular subsets are encouraged

  • Radioprotectors designed to prevent neurological toxicity, such as amifostine, have not yet demonstrated clinical benefit

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Change history

  • 19 July 2010

    In the version of this article initially published online, there was a mistake in section two in Box 1, and the order of some of the references cited in the text, box, tables and reference list was incorrect. The errors have been corrected in all electronic versions of the text.

References

  1. Weil, R. J., Palmieri, D. C., Bronder, J. L., Stark, A. M. & Steeg, P. S. Breast cancer metastasis to the central nervous system. Am. J. Pathol. 167, 913–920 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bendell, J. C. et al. Central nervous system metastases in women who receive trastuzumab-based therapy for metastatic breast carcinoma. Cancer 97, 2972–2977 (2003).

    Article  PubMed  Google Scholar 

  3. Borgelt, B. et al. The palliation of brain metastases: final results of the first two studies by the Radiation Therapy Oncology Group. Int. J. Radiat. Oncol. Biol. Phys. 6, 1–9 (1980).

    Article  CAS  PubMed  Google Scholar 

  4. Tsao, M. N. et al. Radiotherapeutic management of brain metastases: a systematic review and meta-analysis. Cancer Treat. Rev. 31, 256–273 (2005).

    Article  PubMed  Google Scholar 

  5. Wadasadawala, T., Gupta, S., Bagul, V. & Patil, N. Brain metastases from breast cancer: management approach. J. Cancer Res. Ther. 3, 157–165 (2007).

  6. Patchell, R. A. The management of brain metastases. Cancer Treat. Rev. 29, 533–540 (2003).

    Article  PubMed  Google Scholar 

  7. Patchell, R. A. et al. A randomized trial of surgery in the treatment of single metastases to the brain. N. Engl. J. Med. 322, 494–500 (1990).

    Article  CAS  PubMed  Google Scholar 

  8. Noordijk, E. M. et al. The choice of treatment of single brain metastasis should be based on extracranial tumor activity and age. Int. J. Radiat. Oncol. Biol. Phys. 29, 711–717 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Mintz, A. H. et al. A randomized trial to assess the efficacy of surgery in addition to radiotherapy in patients with a single cerebral metastasis. Cancer 78, 1470–1476 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Patchell, R. A. et al. Postoperative radiotherapy in the treatment of single metastases to the brain: a randomized trial. JAMA 280, 1485–1489 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Suh, J. H. Stereotactic radiosurgery for the management of brain metastases. N. Engl. J. Med. 362, 1119–1127 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Kased, N. et al. Gamma Knife radiosurgery for brain metastases from primary breast cancer. Int. J. Radiat. Oncol. Biol. Phys. 75, 1132–1140 (2009).

    Article  PubMed  Google Scholar 

  13. Amendola, B. E., Wolf, A. L., Coy, S. R., Amendola, M. & Bloch, L. Gamma knife radiosurgery in the treatment of patients with single and multiple brain metastases from carcinoma of the breast. Cancer J. 6, 88–92 (2000).

    CAS  PubMed  Google Scholar 

  14. Muacevic, A., Kreth, F. W., Tonn, J. C. & Wowra, B. Stereotactic radiosurgery for multiple brain metastases from breast carcinoma. Cancer 100, 1705–1711 (2004).

    Article  PubMed  Google Scholar 

  15. Chougule, P. B. et al. Randomized treatment of brain metastasis with gamma knife radiosurgery, whole brain radiotherapy or both [abstract]. Int. J. Radiat. Oncol. Biol. Phys. 48, 114 (2000)

    Article  Google Scholar 

  16. Aoyama, H. et al. Stereotactic radiosurgery plus whole-brain radiation therapy vs stereotactic radiosurgery alone for treatment of brain metastases: a randomized controlled trial. JAMA 295, 2483–2491 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Mueller, R. P. et al. Adjuvant whole-brain radiotherapy versus observation after radiosurgery or surgical resection of 1–3 cerebral metastases: Results of the EORTC 22952-26001 study [abstract]. J. Clin. Oncol. 27, 2008 (2009).

    Google Scholar 

  18. Chang, E. L. et al. Neurocognition in patients with brain metastases treated with radiosurgery or radiosurgery plus whole-brain irradiation: a randomised controlled trial. Lancet Oncol. 10, 1037–1044 (2009).

    Article  PubMed  Google Scholar 

  19. Patel, A. J. et al. Factors influencing the risk of local recurrence after resection of a single brain metastasis. J. Neurosurg. doi:10.3171/2009.11.JNS09659.

  20. Tsao, M. N. et al. Clinical practice guideline on the optimal radiotherapeutic management of brain metastases. BMC Cancer 5, 34 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wong, W. W., Schild, S. E., Sawyer, T. E. & Shaw, E. G. Analysis of outcome in patients reirradiated for brain metastases. Int. J. Radiat. Oncol. Biol. Phys. 34, 585–590 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Shaw, E. et al. Single dose radiosurgical treatment of recurrent previously irradiated primary brain tumours and brain metastases: final report of RTOG protocol 90-05 Int. J. Radiat. Oncol. Biol. Phys. 47, 291–298 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Patel, R. R. & Mehta, M. P. Targeted therapy for brain metastases: improving the therapeutic ratio. Clin. Cancer Res. 13, 1675–1683 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. DeAngelis, L. M. et al. The role of postoperative radiotherapy after resection of single brain metastases. Neurosurgery 24, 798–805 (1989).

    Article  CAS  PubMed  Google Scholar 

  25. Ricard, D., Taillia, H. & Renard, J. L. Brain damage from anticancer treatments in adults. Curr. Opin. Oncol. 21, 559–565 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. De Angelis, L. M., Delattre, J. Y. & Posner, J. B. Radiation-induced dementia in patients cured of brain metastases. Neurology 39, 789–796 (1989).

    Article  CAS  Google Scholar 

  27. Rades, D., Lohynska, R., Veninga, T., Stalpers, L. J. & Schild, S. E. Evaluation of 2 whole-brain radiotherapy schedules and prognostic factors for brain metastases in breast cancer patients. Cancer 110, 2587–2592 (2007).

    Article  PubMed  Google Scholar 

  28. Gaspar, L. et al. Recursive partitioning analysis (RPA) of prognostic factors in three Radiation Therapy Oncology Group (RTOG) brain metastases trials. Int. J. Radiat. Oncol. Biol. Phys. 37, 745–751 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Weltman, E. et al. Radiosurgery for brain metastases: a score index for predicting prognosis. Int. J. Radiat. Oncol. Biol. Phys. 46, 1155–1161 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Nieder, C., Marienhagen, K., Astner, S. T. & Molls, M. Prognostic scores in brain metastases from breast cancer. BMC Cancer 9, 105 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Le Scodan, R. et al. Brain metastases from breast carcinoma: validation of the radiation therapy oncology group recursive partitioning analysis classification and proposition of a new prognostic score. Int. J. Radiat. Oncol. Biol. Phys. 69, 839–845 (2007).

    Article  PubMed  Google Scholar 

  32. Pestalozzi, B. C. et al. Identifying breast cancer patients at risk for Central Nervous System (CNS) metastases in trials of the International Breast Cancer Study Group (IBCSG). Ann. Oncol. 17, 935–944 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Eichler, A. F. et al. Survival in patients with brain metastases from breast cancer: the importance of HER-2 status. Cancer 112, 2359–2367 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Wolstenholme, V., Hawkins, M., Ashley, S., Tait, D. & Ross, G. HER2 significance and treatment outcomes after radiotherapy for brain metastases in breast cancer patients. Breast 17, 661–665 (2008).

    Article  PubMed  Google Scholar 

  35. Niwinska, A., Murawska, M. & Pogada, K. Breast cancer brain metastases: differences in survival depending on biological subtype, RPA RTOG prognostic class and systemic treatment after whole-brain radiotherapy (WBRT). Ann. Oncol. 21, 942–948 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Hines, S. L. et al. Clinical outcomes after a diagnosis of brain metastases in patients with estrogen- and/or human epidermal growth factor receptor 2-positive versus triple-negative breast cancer. Ann. Oncol. 19, 1561–1565 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Lee, S. S. et al. Brain metastases in breast cancer: prognostic factors and management. Breast Cancer Res. Treat. 111, 523–530 (2008).

    Article  PubMed  Google Scholar 

  38. Rades, D., Pluemer, A., Veninga, T., Dunst, J. & Schild, S. E. A boost in addition to whole-brain radiotherapy improves patient outcome after resection of 1 or 2 brain metastases in recursive partitioning analysis class 1 and 2 patients. Cancer 110, 1551–1559 (2007).

    Article  PubMed  Google Scholar 

  39. Hoskin, P. J., Crow, J. & Ford, H. T. The influence of extent and local management on the outcome of radiotherapy for brain metastases. Int. J. Radiat. Oncol. Biol. Phys. 19, 111–115 (1990).

    Article  CAS  PubMed  Google Scholar 

  40. Kondziolka, D., Patel, A., Lunsford, L. D., Kassam, A. & Flickinger, J. C. Stereotactic radiosurgery plus whole brain radiotherapy versus radiotherapy alone for patients with multiple brain metastases. Int. J. Radiat. Oncol. Biol. Phys. 45, 427–434 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Andrews, D. W. et al. Whole brain radiation therapy with or without stereotactic radiosurgery boost for patients with one to three brain metastases: phase III results of the RTOG 9508 randomised trial. Lancet 363, 1665–1672 (2004).

    Article  PubMed  Google Scholar 

  42. Bhatnagar, A. K., Flickinger, J. C., Kondziolka, D. & Lunsford, L. D. Stereotactic radiosurgery for four or more intracranial metastases. Int. J. Radiat. Oncol. Biol. Phys. 64, 898–903 (2006).

    Article  PubMed  Google Scholar 

  43. Tomita, N. et al. Helical tomotherapy for brain metastases: dosimetric evaluation of treatment plans and early clinical results. Technol. Cancer Res. Treat. 7, 417–424 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Gupta, T. et al. Planning and delivery of whole brain radiation therapy with simultaneous integrated boost to brain metastases and synchronous limited-field thoracic radiotherapy using helical tomotherapy: a preliminary experience. Technol. Cancer Res. Treat. 8, 15–22 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Sterzing, F. et al. Reirradiation of multiple brain metastases with helical tomotherapy. A multifocal simultaneous integrated boost for eight or more lesions. Strahlenther. Onkol. 185, 89–93 (2009).

    Article  PubMed  Google Scholar 

  46. Hsu, F. et al. Whole brain radiotherapy with hippocampal avoidance and simultaneous integrated boost for 1–3 brain metastases: a feasibility study using volumetric modulated arc therapy. Int. J. Radiat. Oncol. Biol. Phys. 76, 1480–1485 (2010).

    Article  PubMed  Google Scholar 

  47. Langer, C. J. & Mehta, M. P. Current management of brain metastases, with a focus on systemic options. J. Clin. Oncol. 23, 6207–6219 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Murray, K. J. et al. A randomized phase III study of accelerated hyperfractionation versus standard in patients with unresected brain metastases: a report of the Radiation Therapy Oncology Group (RTOG) 9104. Int. J. Radiat. Oncol. Biol. Phys. 39, 571–574 (1997).

    Article  CAS  PubMed  Google Scholar 

  49. Monje, M. L., Mizumatsu, S., Fike, J. R. & Palmer, T. D. Irradiation induces neural precursor-cell dysfunction. Nat. Med. 8, 955–962 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Gutiérrez, A. N. et al. Whole brain radiotherapy with hippocampal avoidance and simultaneously integrated brain metastases boost: a planning study. Int. J. Radiat. Oncol. Biol. Phys. 69, 589–597 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ghia, A. et al. Distribution of brain metastases in relation to the hippocampus: implications for neurocognitive functional preservation. Int. J. Radiat. Oncol. Biol. Phys. 68, 971–977 (2007).

    Article  PubMed  Google Scholar 

  52. Soussain, C. et al. CNS complications of radiotherapy and chemotherapy. Lancet 374, 1639–1651 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Bauman, G. et al. Simultaneous infield boost with helical tomotherapy for patients with 1 to 3 brain metastases. Am. J. Clin. Oncol. 30, 38–44 (2007).

    Article  PubMed  Google Scholar 

  54. Welsh, J. S. et al. Helical tomotherapy as a means of delivering scalp-sparing whole brain radiation therapy. Technol. Cancer Res. Treat. 4, 661–662 (2005).

    Article  PubMed  Google Scholar 

  55. Correa, D. D. & Ahles, T. A. Neurocognitive changes in cancer survivors. Cancer J. 14, 396–400 (2008).

    Article  PubMed  Google Scholar 

  56. Kreukels, B. P., van Dam, F. S., Ridderinkhof, K. R., Boogerd, W. & Schagen, S. B. Persistent neurocognitive problems after adjuvant chemotherapy for breast cancer. Clin. Breast Cancer 8, 80–87 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Rugo, H. S. & Ahles, T. The impact of adjuvant therapy for breast cancer on cognitive function: current evidence and directions for research. Semin. Oncol. 30, 749–762 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Viani, G. A. et al. Whole brain radiotherapy with radiosensitizer for brain metastases. J. Exp. Clin. Cancer Res. 28, 1 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Xu, S. et al. Effects of Motexafin gadolinium on tumor metabolism and radiation sensitivity. Int. J. Radiat. Oncol. Biol. Phys. 49, 1381–1390 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Mehta, M. P. et al. Survival and neurologic outcomes in a randomized trial of motexafin gadolinium and whole-brain radiation therapy in brain metastases. J. Clin. Oncol. 21, 2529–2536 (2003).

    Article  CAS  PubMed  Google Scholar 

  61. Amorino, G. P. et al. Enhancement of tumor oxygenation and radiation response by the allosteric effector of hemoglobin, RSR13. Radiat. Res. 156, 294–300 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Shaw, E. et al. RSR13 plus cranial radiation therapy in patients with brain metastases: comparison with the Radiation Therapy Oncology Group Recursive Partitioning Analysis Brain Metastases Database. J. Clin. Oncol. 21, 2364–2371 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Suh, J. H. et al. Phase III study of efaproxiral as an adjunct to whole-brain radiation therapy for brain metastases. J. Clin. Oncol. 24, 106–114 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Scott, C., Suh, J., Stea, B., Nabid, A. & Hackman, J. Improved survival, quality of life, and quality-adjusted survival in breast cancer patients treated with efaproxiral (Efaproxyn) plus whole-brain radiation therapy for brain metastases. Am. J. Clin. Oncol. 30, 580–587 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Suh, J. H. et al. Results of the phase III ENRICH (RT-016) study of efaproxiral administered concurrently with whole brain radiation therapy (WBRT) in women with brain metastases from breast cancer. Int. J. Radiat. Oncol. Biol. Phys. 72, S50–S51 (2008).

    Article  Google Scholar 

  66. Knisely, J. P. et al. A phase III study of conventional radiation therapy plus thalidomide versus conventional radiation therapy for multiple brain metastases (RTOG 0118). Int. J. Radiat. Oncol. Biol. Phys. 71, 79–86 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Eyre, H. J. et al. Randomized trial of radiotherapy versus radiotherapy plus metronidazole for the treatment of metastatic cancer to brain. J. Neurooncol. 2, 325–330 (1984).

    Article  CAS  PubMed  Google Scholar 

  68. Komarnicky, L. T. et al. A randomized phase III protocol for the evaluation of misonidazole combined with radiation in the treatment of patients with brain metastases (RTOG-7916). Int. J. Radiat. Oncol. Biol. Phys. 20, 53–58 (1991).

    Article  CAS  PubMed  Google Scholar 

  69. Phillips, T. L., Scott, C. B., Leibel, S. A., Rotman, M. & Weigensberg, I. J. Results of a randomized comparison of radiotherapy and bromodeoxyuridine with radiotherapy alone for brain metastases: report of RTOG trial 89-05. Int. J. Radiat. Oncol. Biol. Phys. 33, 339–348 (1995).

    Article  CAS  PubMed  Google Scholar 

  70. Corn, B. W. et al. Prospective evaluation of quality of life and neurocognitive effects in patients with multiple brain metastases receiving whole-brain radiotherapy with or without thalidomide on Radiation Therapy Oncology Group (RTOG) trial 0118. Int. J. Radiat. Oncol. Biol. Phys. 71, 71–78 (2008).

    Article  PubMed  Google Scholar 

  71. Cerchietti, L. C. et al. Phase I/II study of selective cyclooxygenase-2 inhibitor celecoxib as a radiation sensitizer in patients with unresectable brain metastases. J. Neurooncol. 71, 73–81 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Cassier, P. A. et al. A phase 2 trial of whole-brain radiotherapy combined with intravenous chemotherapy in patients with brain metastases from breast cancer. Cancer 113, 2532–2538 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Hedde, J. P. et al. A phase I/II trial of topotecan and radiation therapy for brain metastases in patients with solid tumors. Int. J. Radiat. Oncol. Biol. Phys. 68, 839–844 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Addeo, R. et al. Phase 2 trial of temozolomide using protracted low-dose and whole-brain radiotherapy for nonsmall cell lung cancer and breast cancer patients with brain metastases. Cancer 113, 2524–2531 (2008).

    Article  CAS  PubMed  Google Scholar 

  75. Addeo, R. et al. Concomitant treatment of brain metastasis with whole brain radiotherapy [WBRT] and temozolomide [TMZ] is active and improves quality of life. BMC Cancer 7, 18 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Verger, E. et al. Temozolomide and concomitant whole brain radiotherapy in patients with brain metastases: a phase II randomized trial. Int. J. Radiat. Oncol. Biol. Phys. 61, 185–191 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Antonadou, D. et al. Phase II randomized trial of temozolomide and concurrent radiotherapy in patients with brain metastases. J. Clin. Oncol. 20, 3644–3650 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Park, Y. H. et al. Trastuzumab treatment improves brain metastasis outcomes through control and durable prolongation of systemic extracranial disease in HER2-overexpressing breast cancer patients. Br. J. Cancer 100, 894–900 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Stemmler, H. J. et al. Ratio of trastuzumab levels in serum and cerebrospinal fluid is altered in HER2-positive breast cancer patients with brain metastases and impairment of blood-brain barrier. Anticancer Drugs 18, 23–28 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Liang, K. et al. Sensitization of breast cancer cells to radiation by trastuzumab. Mol. Cancer Ther. 2, 1113–1120 (2003).

    CAS  PubMed  Google Scholar 

  81. Lin, N. U. et al. Multicenter phase II study of lapatinib in patients with brain metastases from HER2-positive breast cancer. Clin. Cancer Res. 15, 1452–1459 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Shah, N., Groom, N., Jackson, S., Sibtain, A. & Hoskin, P. A pilot study to assess the feasibility of prior scalp cooling with palliative whole brain radiotherapy. Br. J. Radiol. 73, 514–516 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Cuscela, D. et al. Protection from radiation-induced alopecia with topical application of nitroxides: fractionated studies. Cancer J. Sci. Am. 2, 273–278 (1996).

    CAS  PubMed  Google Scholar 

  84. Metz, J. M. et al. A phase I study of topical Tempol for the prevention of alopecia induced by whole brain radiotherapy. Clin. Cancer Res. 10, 6411–6417 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Brizel, D. M. et al. Phase III randomized trial of amifostine as a radioprotector in head and neck cancer. J. Clin. Oncol. 18, 3339–3345 (2000).

    Article  CAS  PubMed  Google Scholar 

  86. Nieder, C., Andratschke, N. H., Wiedenmann, N. & Molls, M. Prevention of radiation-induced central nervous system toxicity: a role for amifostine? Anticancer Res. 24, 3803–3809 (2004).

    CAS  PubMed  Google Scholar 

  87. Lamproglou, I. et al. Radiation-induced cognitive dysfunction: the protective effect of ethyol in young rats. Int. J. Radiat. Oncol. Biol. Phys. 57, 1109–1115 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. Magné, N. et al. The efficacy and toxicity of EGFR in the settings of radiotherapy: Focus on published clinical trials. Eur. J. Cancer 44, 2133–2143 (2008).

    Article  PubMed  CAS  Google Scholar 

  89. Magné, N., Chargari, C., Soria, J. C. & Deutsch, E. Concomitant chemo-radiotherapy in clinical trials: to promote step by step rational development. Crit. Rev. Oncol. Hematol. 70, 206–215 (2009).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

C. Chargari and Y. M. Kirova prepared the outline for the manuscript and wrote the content. All authors contributed to discussion of content for the article, researched data to include in the manuscript, reviewed and edited the manuscript before submission, and revised the manuscript in response to the peer-reviewers' comments.

Corresponding author

Correspondence to Cyrus Chargari.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chargari, C., Campana, F., Pierga, JY. et al. Whole-brain radiation therapy in breast cancer patients with brain metastases. Nat Rev Clin Oncol 7, 632–640 (2010). https://doi.org/10.1038/nrclinonc.2010.119

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2010.119

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer