Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Idiotype vaccines for lymphoma: proof-of-principles and clinical trial failures

Abstract

The clonal immunoglobulin idiotype displayed on the surface of most malignant B cells is a patient- and tumour-specific antigen that can be used for therapeutic vaccination. Several studies have confirmed the biological efficacy of soluble protein idiotypic vaccination and two clinical trials have shown the clinical efficacy of this procedure. One study has demonstrated clinical benefit associated with idiotypic vaccination. However, three randomized clinical trials have recently failed to achieve their main end points for reasons that are probably unrelated to the vaccine. While scepticism towards this type of non-toxic medical intervention is mounting, such patient-specific treatments might yet see the light of day through better designed clinical trials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Relapse-free survival curves of the first trial to prove clinical benefit of idiotypic vaccination.

Similar content being viewed by others

References

  1. Bendandi, M. Anti-idiotype vaccines for human follicular lymphoma. Leukemia 14, 1333–1339 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Stevenson, G. K. & Stevenson, F. K. Antibody to a molecularly-defined antigen confined to a tumor cell surface. Nature 254, 714–716 (1974).

    Article  Google Scholar 

  3. Baskar, S., Kobrin, C. B. & Kwak, L. W. Autologous lymphoma vaccines induce human T cell responses against multiple, unique epitopes. J. Clin. Invest. 113, 1498–1510 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bendandi, M. Role of anti-idiotype vaccines in the modern treatment of human follicular lymphoma. Expert Rev. Anticancer Ther. 1, 65–72 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Bendandi, M. The role of idiotype vaccines in the treatment of human B-cell malignancies. Expert Rev. Vaccines 3, 163–170 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Dave, S. S. et al. Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating immune cells. N. Engl. J. Med. 351, 2159–2169 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Bendandi, M. Aiming at a clinical strategy for follicular lymphoma. CA Cancer J. Clin. 58, 305–317 (2008).

    Article  PubMed  Google Scholar 

  8. Lynch, R. G., Graff, R. J., Sirisinha, S., Simms, E. S. & Eisen, H. N. Myeloma proteins as tumor-specific transplantation antigens. Proc. Natl Acad. Sci. USA 69, 1540–1544 (1972).

    Article  CAS  Google Scholar 

  9. Kaminski, M. S., Kitamura, K., Maloney, D. G. & Levy, R. Idiotype vaccination against murine B cell lymphoma. Inhibition of tumor immunity by free idiotype protein. J. Immunol. 138, 1289–1296 (1987).

    CAS  PubMed  Google Scholar 

  10. Kwak, L. W., Young, H. A., Pennington, R. W. & Weeks, S. D. Vaccination with syngeneic, lymphoma-derived immunoglobulin idiotype combined with granulocyte/macrophage colony-stimulating factor primes mice for a protective T cell response. Proc. Natl Acad. Sci. USA 93, 10972–10977 (1996).

    Article  CAS  Google Scholar 

  11. Hsu, F. J. et al. Tumor-specific idiotype vaccines in the treatment of patients with B-cell lymphoma — long-term results of a clinical trial. Blood 89, 3129–3135 (1997).

    CAS  PubMed  Google Scholar 

  12. Bendandi, M. et al. Complete molecular remissions induced by patient-specific vaccination plus granulocyte-monocyte colony-stimulating factor against lymphoma. Nature Med. 5, 1171–1177 (1999).

    Article  CAS  Google Scholar 

  13. Redfern, C. H. et al. Phase II trial of idiotype vaccination in previously treated patients with indolent non-Hodgkin's lymphoma resulting in durable clinical responses. J. Clin. Oncol. 24, 3107–3112 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Inogés, S. et al. Clinical benefit associated with idiotypic vaccination in patients with follicular lymphoma. J. Natl Cancer Inst. 98, 1292–1301 (2006).

    Article  PubMed  Google Scholar 

  15. Yáñez, R. et al. Anti-idiotypic immunotherapy in follicular lymphoma patients: results of a long follow-up study. J. Immunother. 31, 310–312 (2008).

    Article  PubMed  Google Scholar 

  16. Inogés, S. et al. Prolonged idiotypic vaccination against follicular lymphoma. Leuk. Lymphoma 50, 47–53 (2009).

    Article  PubMed  Google Scholar 

  17. Bendandi, M. Clinical benefit of idiotype vaccines: too many trials for a clever demonstration? Rev. Recent Clin. Trials 1, 67–74 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Freedman, A. et al. Placebo-controlled Phase III trial of patient-specific immunotherapy with mitumprotimut-T and granulocyte-macrophage colony-stimulating factor after rituximab in patients with follicular lymphoma. J. Clin. Oncol. 27, 3036–3043 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sirisinha, S. & Eisen, H. N. Autoimmune-like antibodies to the ligand-binding sites of myeloma proteins. Proc. Natl Acad. Sci. USA 68, 3130–3135 (1971).

    Article  CAS  Google Scholar 

  20. Longo, D. L. Idiotype vaccination in follicular lymphoma: knocking on the doorway to cure. J. Natl Cancer Inst. 98, 1263–1265 (2006).

    Article  PubMed  Google Scholar 

  21. Harris, J. R. & Markl, J. Keyhole limpet hemocyanin: molecular structure of a potent marine immunoactivator. A review. Eur. Urol. 37 (Suppl. 3), 24–33 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Ai, W. Z., Tibshirani, R., Taidi, B., Czerwinski, D. K. & Levy, R. Anti-idiotype antibody response after vaccination correlates with better overall survival in follicular lymphoma. Blood 113, 5743–5746 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kwak, L. W. et al. Induction of immune responses in patients with B-cell lymphoma against the surface-immunoglobulin idiotype expressed by their tumors. N. Engl. J. Med. 327, 1209–1215 (1992).

    Article  CAS  PubMed  Google Scholar 

  24. Johnson, P. W. M. et al. Patterns of survival in patients with recurrent follicular lymphoma: a 20-year study from a single center. J. Clin. Oncol. 13, 140–147 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. de Cerio, A. L. & Inogés, S. Future of idiotypic vaccination for B-cell lymphoma. Expert Rev. Vaccines 8, 43–50 (2009).

    Article  PubMed  Google Scholar 

  26. Houot, R. & Levy, R. Vaccines for lymphomas: idiotype vaccines and beyond. Blood Rev. 23, 137–142 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Twombly, R. First proteasome inhibitor approved for multiple myeloma. J. Natl Cancer Inst. 95, 845 (2006).

    Article  Google Scholar 

  28. Richardson, P. G. et al. A phase 2 study of bortezomib in relapsed, refractory myeloma. N. Engl. J. Med. 348, 2609–2617 (2003).

    CAS  PubMed  Google Scholar 

  29. Cheson, B. D. et al. Revised response criteria for malignant lymphoma. J. Clin. Oncol. 25, 579–586 (2007).

    Article  PubMed  Google Scholar 

  30. Levy, R. et al. Results of a phase 3 trial evaluating safety and efficacy of specific immunotherapy, recombinant idiotype (Id) conjugated to KLH (Id-KLH) with GM-CSF, compared to non-specific immunotherapy, KLH with GM-CSF, in patients with follicular non-Hodgkin's lymphoma (fNHL). Proc. Am. Assoc. Cancer Res. Abstr. LB–204 (2008).

  31. Harris, N. L. et al. in WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues (eds Swerdlow, S. H. et al.) 220–226 (IARC, Lyon, 2008).

    Google Scholar 

  32. Schuster, S. J. et al. Idiotype vaccine therapy (BiovaxID) in follicular lymphoma in first complete remission: Phase III clinical trial results. J. Clin. Oncol. Abstr. 27, S15 (2009).

    Article  Google Scholar 

  33. Raffeld, M., Neckers, L., Longo, D. L. & Cossman, J. Spontaneous alteration of idiotype in a monoclonal B-cell lymphoma. Escape from detection by anti-idiotype. N. Engl. J. Med. 312, 1653–1658 (1985).

    Article  CAS  PubMed  Google Scholar 

  34. Meeker, T. et al. Emergence of idiotype variants during treatment of B-cell lymphoma with anti-idiotype antibodies. N. Engl. J. Med. 312, 1658–1665 (1985).

    Article  CAS  PubMed  Google Scholar 

  35. Park, H. J. & Neelapu, S. S. Developing idiotype vaccines for lymphoma: from preclinical studies to phase III clinical trials. Br. J. Haematol. 142, 179–191 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Carroll, W. L., Thielemans, K., Dilley, J. & Levy, R. Mouse x human heterohybridomas as fusion partners with human B-cell tumors. J. Immunol. Methods 89, 61–72 (1986).

    Article  CAS  PubMed  Google Scholar 

  37. Rodríguez-Calvillo, M. et al. Variations in “rescuability” of immunoglobulin molecules from different forms of human lymphoma: implications for antiidiotype vaccine development. Crit. Rev. Oncol. Hematol. 52, 1–7 (2004).

    Article  PubMed  Google Scholar 

  38. Zhu, D. et al. Acquisition of potential N-glycosylation sites in the immunoglobulin variable region by somatic mutation is a distinctive feature of follicular lymphoma. Blood 99, 2562–2568 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Zabalegui, N. et al. Acquired potential N-glycosylation sites within the tumor-specific heavy chains of B-cell malignancies. Haematologica 89, 541–546 (2004).

    CAS  PubMed  Google Scholar 

  40. Radcliffe, C. M. et al. Human follicular lymphoma cells contain oligomannose glycans in the antigen-binding site of the B-cell receptor. J. Biol. Chem. 282, 7405–7415 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Betting, D. J. et al. Enhanced immune stimulation by a therapeutic lymphoma tumor antigen vaccine produced in insect cells involves mannose receptor targeting to antigen presenting cells. Vaccine 27, 250–259 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Timmerman, J. M. et al. Tumor-specific recombinant idiotype immunisation after chemotherapy as initial treatment for follicular non-Hodgkin's lymphoma. Leuk. Lymphoma 50, 37–46 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Houot, R. & Levy, R. Idiotype vaccination for lymphoma: moving towards optimization. Leuk. Lymphoma 50, 1–2 (2009).

    Article  PubMed  Google Scholar 

  44. Betting, D. J., Kafi, K., Abdollahi-Fard, A., Hurvitz, S. A. & Timmerman, J. M. Sulfhydril-based tumor antigen-carrier protein conjugates stimulate superior antitumor immunity against B-cell lymphomas. J. Immunol. 181, 4131–4140 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Kafi, K. et al. Maleimide conjugation markedly enhances the immunogenicity of both human and murine idiotype-KLH vaccines. Mol. Immunol. 46, 448–456 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Biragyn, A. et al. Chemokine receptor-mediated delivery directs self-tumor antigen efficiently into the class II processing pathway in vitro and induces protective immunity in vivo. Blood 104, 1961–1969 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Davis, T. A., Maloney, D. G., Czerwinski, D. K., Liles, T. M. & Levy, R. Anti-idiotype antibodies can induce long-term complete remissions in non-Hodgkin's lymphoma without eradicating the malignant clone. Blood 92, 1184–1190 (1998).

    CAS  PubMed  Google Scholar 

  48. George, A. J., Tutt, A. L. & Stevenson, F. K. Anti-idiotypic mechanisms involved in suppression of a mouse B cell lymphoma, BCL1. J. Immunol. 138, 628–634 (1987).

    CAS  PubMed  Google Scholar 

  49. Campbell, M. J., Esserman, L., Byars, N. E., Allison, A. C. & Levy, R. Idiotype vaccination against murine B cell lymphoma. Humoral and cellular requirements for the full expression of antitumor activity. J. Immunol. 145, 1029–1036 (1990).

    CAS  PubMed  Google Scholar 

  50. Neelapu, S. S. et al. Vaccine-induced tumor-specific immunity despite severe B-cell depletion in mantle cell lymphoma. Nature Med. 11, 986–991 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Inogés, S. et al. Feasibility of idiotype vaccination in relapsed B-cell malignancies. Haematologica 88, 1438–1440 (2003).

    PubMed  Google Scholar 

  52. Weng, W. K., Czerwinski, D., Timmerman, J., Hsu, F. J. & Levy, R. Clinical outcome of lymphoma patients after idiotype vaccination is correlated with humoral immune response and immunoglobulin G Fc receptor genotype. J. Clin. Oncol. 22, 4717–4724 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Weng, W. K., Czerwinski, D. & Levy, R. Humoral immune response and immunoglobulin G Fc receptor genotype are associated with better clinical outcome following idiotype vaccination in follicular lymphoma patients regardless of their response to induction chemotherapy. Blood 109, 951–953 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hagenbeek, A. Monoclonal antibodies (update): CD20, rituximab. Hematol. Meeting Rep. 2, 50–51 (2008).

    Google Scholar 

Download references

Acknowledgements

The work at the Center for Applied Medical Research of the University of Navarra, Spain, is supported by the Unión Temporal de Empresas project Fundación para la Investigación Médica Aplicada, and the work at the Simmons Comprehensive Cancer Center of the University of Texas Southwestern Medical Center, USA, is supported by the Bobbie and Leo Fields Family Fund for Medical Research.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

OMIM

non-Hodgkin's lymphomas

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bendandi, M. Idiotype vaccines for lymphoma: proof-of-principles and clinical trial failures. Nat Rev Cancer 9, 675–681 (2009). https://doi.org/10.1038/nrc2717

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2717

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing