Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Modular system for the construction of zinc-finger libraries and proteins

Abstract

Engineered zinc-finger transcription factors (ZF-TF) are powerful tools to modulate the expression of specific genes. Complex libraries of ZF-TF can be delivered into cells to scan the genome for genes responsible for a particular phenotype or to select the most effective ZF-TF to regulate an individual gene. In both cases, the construction of highly representative and unbiased libraries is critical. In this protocol, we describe a user-friendly ZF technology suitable for the creation of complex libraries and the construction of customized ZF-TFs. The new technology described here simplifies the building of ZF libraries, avoids PCR-introduced bias and ensures equal representation of every module. We also describe the construction of a customized ZF-TF that can be transferred to a number of expression vectors. This protocol can be completed in 9–11 d.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Plasmid map of the SuperZiF plasmids GNN, ANN and CNN.
Figure 2: Library cloning scheme.
Figure 3: Agarose gel electrophoresis (1.5% in 1× TAE with EtBr) of individual clones from the 5ZF GNH–ANN library.
Figure 4: Western blot of 4ZF and 5ZF GNH–ANN library expression with detection by an HA tag with anti-HA-peroxidase antibody (Roche).

Similar content being viewed by others

References

  1. Elrod-Erickson, M., Rould, M.A., Nekludova, L. & Pabo, C.O. Zif268 protein-DNA complex refined at 1.6 A: a model system for understanding zinc finger-DNA interactions. Structure 4, 1171–1180 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Pavletich, N.P. & Pabo, C.O. Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A. Science 252, 809–817 (1991).

    Article  CAS  PubMed  Google Scholar 

  3. Segal, D.J., Dreier, B., Beerli, R.R. & Barbas III, C.F. Toward controlling gene expression at will: selection and design of zinc finger domains recognizing each of the 5′-GNN-3′ DNA target sequences. Proc. Natl. Acad. Sci. USA 96, 2758–2763 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dreier, B., Beerli, R.R., Segal, D.J., Flippin, J.D. & Barbas III, C.F. Development of zinc finger domains for recognition of the 5′-ANN-3′ family of DNA sequences and their use in the construction of artificial transcription factors. J. Biol. Chem. 276, 29466–29478 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Dreier, B. et al. Development of zinc finger domains for recognition of the 5′-CNN-3′ family DNA sequences and their use in the construction of artificial transcription factors. J. Biol. Chem. 280, 35588–35597 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Jamieson, A.C. et al. Controlling gene expression in Drosophila using engineered zinc finger protein transcription factors. Biochem. Biophys. Res. Commun. 348, 873–879 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Snowden, A.W. et al. Repression of vascular endothelial growth factor A in glioblastoma cells using engineered zinc finger transcription factors. Cancer Res. 63, 8968–8976 (2003).

    CAS  PubMed  Google Scholar 

  8. Tan, S. et al. Zinc-finger protein-targeted gene regulation: genomewide single-gene specificity. Proc. Natl. Acad. Sci. USA 100, 11997–12002 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bartsevich, V.V., Miller, J.C., Case, C.C. & Pabo, C.O. Engineered zinc finger proteins for controlling stem cell fate. Stem Cells 21, 632–637 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Beerli, R.R., Segal, D.J., Dreier, B. & Barbas III, C.F. Toward controlling gene expression at will: specific regulation of the erbB-2/HER-2 promoter by using polydactyl zinc finger proteins constructed from modular building blocks. Proc. Natl. Acad. Sci. USA 95, 14628–14633 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Beerli, R.R., Dreier, B. & Barbas III, C.F. Positive and negative regulation of endogenous genes by designed transcription factors. Proc. Natl. Acad. Sci. USA 97, 1495–1500 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Falke, D., Fisher, M., Ye, D. & Juliano, R.L. Design of artificial transcription factors to selectively regulate the pro-apoptotic bax gene. Nucleic Acids Res. 31, e10 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Falke, D., Fisher, M.H. & Juliano, R.L. Selective transcription of p53 target genes by zinc finger-p53 DNA binding domain chimeras. Biochim. Biophys. Acta. 1681, 15–27 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Xu, D., Ye, D., Fisher, M. & Juliano, R.L. Selective inhibition of P-glycoprotein expression in multidrug-resistant tumor cells by a designed transcriptional regulator. J. Pharmacol. Exp. Ther. 302, 963–971 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Rebar, E.J. et al. Induction of angiogenesis in a mouse model using engineered transcription factors. Nat. Med. 8, 1427–1432 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Liu, P.Q. et al. Regulation of an endogenous locus using a panel of designed zinc finger proteins targeted to accessible chromatin regions. Activation of vascular endothelial growth factor A. J. Biol. Chem. 276, 11323–11334 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Gommans, W.M. et al. Engineering zinc finger protein transcription factors to downregulate the epithelial glycoprotein-2 promoter as a novel anti-cancer treatment. Mol. Carcinog. 46, 391–401 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Nomura, W. & Barbas III, C.F. In vivo site-specific DNA methylation with a designed sequence-enabled DNA methylase. J. Am. Chem. Soc. 129, 8676–8677 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Smith, A.E. & Ford, K.G. Specific targeting of cytosine methylation to DNA sequences in vivo . Nucleic Acids Res. 35, 740–754 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Minczuk, M., Papworth, M.A., Kolasinska, P., Murphy, M.P. & Klug, A. Sequence-specific modification of mitochondrial DNA using a chimeric zinc finger methylase. Proc. Natl. Acad. Sci. USA 103, 19689–19694 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Snowden, A.W., Gregory, P.D., Case, C.C. & Pabo, C.O. Gene-specific targeting of H3K9 methylation is sufficient for initiating repression in vivo . Curr. Biol. 12, 2159–2166 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Gordley, R.M., Smith, J.D., Graslund, T. & Barbas III, C.F. Evolution of programmable zinc finger-recombinases with activity in human cells. J. Mol. Biol. 367, 802–813 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Akopian, A., He, J., Boocock, M.R. & Stark, W.M. Chimeric recombinases with designed DNA sequence recognition. Proc. Natl. Acad. Sci. USA 100, 8688–8691 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yant, S.R., Huang, Y., Akache, B. & Kay, M.A. Site-directed transposon integration in human cells. Nucleic Acids Res. 35, e50 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Tan, W., Dong, Z., Wilkinson, T.A., Barbas III, C.F. & Chow, S.A. Human immunodeficiency virus type 1 incorporated with fusion proteins consisting of integrase and the designed polydactyl zinc finger protein E2C can bias integration of viral DNA into a predetermined chromosomal region in human cells. J. Virol. 80, 1939–1948 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kim, Y.G., Cha, J. & Chandrasegaran, S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc. Natl. Acad. Sci. USA 93, 1156–1160 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bibikova, M. et al. Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Mol. Cell Biol. 21, 289–297 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bibikova, M., Golic, M., Golic, K.G. & Carroll, D. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics 161, 1169–1175 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Bibikova, M., Beumer, K., Trautman, J.K. & Carroll, D. Enhancing gene targeting with designed zinc finger nucleases. Science 300, 764 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Porteus, M.H. & Baltimore, D. Chimeric nucleases stimulate gene targeting in human cells. Science 300, 763 (2003).

    Article  PubMed  Google Scholar 

  31. Porteus, M.H. Mammalian gene targeting with designed zinc finger nucleases. Mol. Ther. 13, 438–446 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Lloyd, A., Plaisier, C.L., Carroll, D. & Drews, G.N. Targeted mutagenesis using zinc-finger nucleases in Arabidopsis. Proc. Natl. Acad. Sci. USA 102, 2232–2237 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wright, D.A. et al. High-frequency homologous recombination in plants mediated by zinc-finger nucleases. Plant J. 44, 693–705 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Urnov, F.D. et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435, 646–651 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Alwin, S. et al. Custom zinc-finger nucleases for use in human cells. Mol. Ther. 12, 610–617 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Moehle, E.A. et al. Targeted gene addition into a specified location in the human genome using designed zinc finger nucleases. Proc. Natl. Acad. Sci. USA 104, 3055–3060 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Beerli, R.R., Schopfer, U., Dreier, B. & Barbas III, C.F. Chemically regulated zinc finger transcription factors. J. Biol. Chem. 275, 32617–32627 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Ghosh, I., Stains, C.I., Ooi, A.T. & Segal, D.J. Direct detection of double-stranded DNA: Molecular methods and applications for DNA diagnostics. Mol. Biosyst. 2, 551–560 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Ooi, A.T., Stains, C.I., Ghosh, I. & Segal, D.J. Sequence-enabled reassembly of beta-lactamase (SEER-LAC): a sensitive method for the detection of double-stranded DNA. Biochemistry 45, 3620–3625 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Stains, C.I., Furman, J.L., Segal, D.J. & Ghosh, I. Site-specific detection of DNA methylation utilizing mCpG-SEER. J. Am. Chem. Soc. 128, 9761–9765 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Liu, Q., Segal, D.J., Ghiara, J.B. & Barbas III, C.F. Design of polydactyl zinc-finger proteins for unique addressing within complex genomes. Proc. Natl. Acad. Sci. USA 94, 5525–5530 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Guan, X. et al. Heritable endogenous gene regulation in plants with designed polydactyl zinc finger transcription factors. Proc. Natl. Acad. Sci. USA 99, 13296–13301 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Segal, D.J., Crotty, J.W., Bhakta, M.S., Barbas III, C.F. & Horton, N.C. Structure of Aart, a designed six-finger zinc finger peptide, bound to DNA. J. Mol. Biol. 363, 405–421 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Blancafort, P., Magnenat, L. & Barbas III, C.F. Scanning the human genome with combinatorial transcription factor libraries. Nat. Biotechnol. 21, 269–274 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Magnenat, L., Blancafort, P. & Barbas III, C.F. In vivo selection of combinatorial libraries and designed affinity maturation of polydactyl zinc finger transcription factors for ICAM-1 provides new insights into gene regulation. J. Mol. Biol. 341, 635–649 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Lee, D.K., Kim, Y.H., Kim, J.S. & Seol, W. Induction and characterization of taxol-resistance phenotypes with a transiently expressed artificial transcriptional activator library. Nucleic Acids Res. 32, e116 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Zhao, X.H., Zhu, X.D., Liu, J., Rao, X.J. & Huang, P.T. Construction of a SV40 promoter specific artificial transcription factor. Sheng Wu Gong Cheng Xue Bao 19, 608–612 (2003).

    CAS  PubMed  Google Scholar 

  48. Blancafort, P. et al. Genetic reprogramming of tumor cells by zinc finger transcription factors. Proc. Natl. Acad. Sci. USA 102, 11716–11721 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lund, C.V., Blancafort, P., Popkov, M. & Barbas III, C.F. Promoter-targeted phage display selections with preassembled synthetic zinc finger libraries for endogenous gene regulation. J. Mol. Biol. 340, 599–613 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Lindhout, B.I., Pinas, J.E., Hooykaas, P.J. & van der Zaal, B.J. Employing libraries of zinc finger artificial transcription factors to screen for homologous recombination mutants in Arabidopsis. Plant J. 48, 475–483 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Park, K.S. et al. Phenotypic alteration of eukaryotic cells using randomized libraries of artificial transcription factors. Nat. Biotechnol. 21, 1208–1214 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Park, K.S., Jang, Y.S., Lee, H. & Kim, J.S. Phenotypic alteration and target gene identification using combinatorial libraries of zinc finger proteins in prokaryotic cells. J. Bacteriol. 187, 5496–5499 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Blancafort, P. et al. Modulation of drug resistance by artificial transcription factors. Mol. Cancer Ther. 7, 688–697 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Tschulena, U., Peterson, K.R., Gonzalez, B., Fedosyuk, H. & Barbas III, C.F. Positive selection of DNA-protein interactions in mammalian cells through phenotypic coupling with retrovirus production. Nat. Struct. Mol. Biol. 16, 1195–1199 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Meng, X., Thibodeau-Beganny, S., Jiang, T., Joung, J.K. & Wolfe, S.A. Profiling the DNA-binding specificities of engineered Cys2His2 zinc finger domains using a rapid cell-based method. Nucleic Acids Res. 35, e81 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Durai, S., Bosley, A., Abulencia, A.B., Chandrasegaran, S. & Ostermeier, M. A bacterial one-hybrid selection system for interrogating zinc finger-DNA interactions. Comb. Chem. High Throughput Screen 9, 301–311 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Bae, K.H. & Kim, J.S. One-step selection of artificial transcription factors using an in vivo screening system. Mol. Cells 21, 376–380 (2006).

    CAS  PubMed  Google Scholar 

  58. Bartsevich, V.V. & Juliano, R.L. Regulation of the MDR1 gene by transcriptional repressors selected using peptide combinatorial libraries. Mol. Pharmacol. 58, 1–10 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Ihara, H. et al. In vitro selection of zinc finger DNA-binding proteins through ribosome display. Biochem. Biophys. Res. Commun. 345, 1149–1154 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Sepp, A. & Choo, Y. Cell-free selection of zinc finger DNA-binding proteins using in vitro compartmentalization. J. Mol. Biol. 354, 212–219 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Carroll, D., Morton, J.J., Beumer, K.J. & Segal, D.J. Design, construction and in vitro testing of zinc finger nucleases. Nat. Protoc. 1, 1329–1341 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Wright, D.A. et al. Standardized reagents and protocols for engineering zinc finger nucleases by modular assembly. Nat. Protoc. 1, 1637–1652 (2006).

    Article  PubMed  Google Scholar 

  63. Maeder, M.L. et al. Rapid 'open-source' engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol. Cell 31, 294–301 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Desjarlais, J.R. & Berg, J.M. Use of a zinc-finger consensus sequence framework and specificity rules to design specific DNA binding proteins. Proc. Natl. Acad. Sci. USA 90, 2256–2260 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mandell, J.G. & Barbas III, C.F. Zinc finger tools: custom DNA-binding domains for transcription factors and nucleases. Nucleic Acids Res. 34, W516–W523 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gordley, R.M., Gersbach, C.A. & Barbas III, C.F. Synthesis of programmable integrases. Proc. Natl. Acad. Sci. USA 106, 5053–5058 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Liu, X. et al. Transforming growth factor beta-induced phosphorylation of Smad3 is required for growth inhibition and transcriptional induction in epithelial cells. Proc. Natl. Acad. Sci. USA 94, 10669–10674 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sidhu, S.S., Lowman, H.B., Cunningham, B.C. & Wells, J.A. Phage display for selection of novel binding peptides. Methods Enzymol. 328, 333–363 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Barbas III, C.F., Burton, D.R., Scott, J.K. & Silverman, G.J. Phage Display: A Laboratory Manual (Cold Spring Harbor Laboratory Press, 2001).

Download references

Acknowledgements

We thank S. Juraja and S. Alonso for critical reading of the manuscript and members of our group for helpful suggestions. L.J.S. is supported by The American Cancer Society Illinois Division—Linda M. Campbell Postdoctoral Fellowship. Funding was provided by grants from the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

B.G. and L.J.S. contributed equally to this work. C.F.B. III conceived of the SuperZif library construction concept and directed the research. Y.Y., B.G. and C.F.B. III designed the SuperZif vectors. R.P.F. designed and constructed the pSCV vector, modified the SuperZiFCNN vector and aided in library construction. B.G., L.J.S. and L.A. constructed and tested the libraries. The paper was written by L.J.S. with assistance from B.G., C.F.B. III and R.P.F.

Note: Supplementary information is available via the HTML version of this article.

Corresponding author

Correspondence to Carlos F Barbas III.

Supplementary information

Supplementary Information

Supplementary Sequence Archive (DOC 323 kb)

Supplementary Figure 1

Vector maps of SuperZiF vectors and pSCV. (PDF 262 kb)

Supplementary Figure 2

Vector maps of expression vectors in Table 1. (PDF 597 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonzalez, B., Schwimmer, L., Fuller, R. et al. Modular system for the construction of zinc-finger libraries and proteins. Nat Protoc 5, 791–810 (2010). https://doi.org/10.1038/nprot.2010.34

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2010.34

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research