Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Subunit interaction with PICK and GRIP controls Ca2+ permeability of AMPARs at cerebellar synapses

Abstract

At many excitatory central synapses, activity produces a lasting change in the synaptic response by modifying postsynaptic AMPA receptors (AMPARs). Although much is known about proteins involved in the trafficking of Ca2+-impermeable (GluR2-containing) AMPARs, little is known about protein partners that regulate subunit trafficking and plasticity of Ca2+-permeable (GluR2-lacking) AMPARs. At cerebellar parallel fiber–stellate cell synapses, activity triggers a novel type of plasticity: Ca2+ influx through GluR2-lacking synaptic AMPARs drives incorporation of GluR2-containing AMPARs, generating rapid, lasting changes in excitatory postsynaptic current properties. Here we examine how glutamate receptor interacting protein (GRIP, also known as AMPAR binding protein or ABP) and protein interacting with C-kinase-1 (PICK) regulate subunit trafficking and plasticity. We find that repetitive synaptic activity triggers loss of synaptic GluR2-lacking AMPARs by selectively disrupting their interaction with GRIP and that PICK drives activity-dependent delivery of GluR2-containing receptors. This dynamic regulation of AMPARs provides a feedback mechanism for controlling Ca2+permeability of synaptic receptors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PICK is not involved in the maintenance of synaptic AMPA receptors in stellate cells.
Figure 2: Pep2-AVKI inhibited the activity-induced increase in the amplitude of EPSCs at +40 mV.
Figure 3: Effect of pep2m and control scrambled peptide (pep2s) on the activity-dependent change in EPSC amplitude, and current-voltage relationships.
Figure 4: Single-channel currents recorded from outside-out patches excised from the soma of stellate cells.
Figure 5: Pep2-SVKI reduced the amplitude of synaptic currents.
Figure 6: Activity-dependent reduction in EPSC amplitude at −60 mV was greater with pep2-SVKI than with pep2-AVKI.

Similar content being viewed by others

References

  1. Bliss, T.V. & Collingridge, G.L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39 (1993).

    Article  CAS  Google Scholar 

  2. Bredt, D.S. & Nicoll, R.A. AMPA receptor trafficking at excitatory synapses. Neuron 40, 361–379 (2003).

    Article  CAS  Google Scholar 

  3. Sheng, M. & Kim, M.J. Postsynaptic signaling and plasticity mechanisms. Science 298, 776–780 (2002).

    Article  CAS  Google Scholar 

  4. Song, I. & Huganir, R.L. Regulation of AMPA receptors during synaptic plasticity. Trends Neurosci. 25, 578–588 (2002).

    Article  CAS  Google Scholar 

  5. Lei, S. & McBain, C.J. Two loci of expression for long-term depression at hippocampal mossy fiber–interneuron synapses. J. Neurosci. 24, 2112–2121 (2004).

    Article  CAS  Google Scholar 

  6. Liu, S.Q. & Cull-Candy, S.G. Synaptic activity at calcium-permeable AMPA receptors induces a switch in receptor subtype. Nature 405, 454–458 (2000).

    Article  CAS  Google Scholar 

  7. Geiger, J.R. et al. Relative abundance of subunit mRNAs determines gating and Ca2+ permeability of AMPA receptors in principal neurons and interneurons in rat CNS. Neuron 15, 193–204 (1995).

    Article  CAS  Google Scholar 

  8. Jonas, P., Racca, C., Sakmann, B., Seeburg, P.H. & Monyer, H. Differences in Ca2+ permeability of AMPA-type glutamate receptor channels in neocortical neurons caused by differential GluR-B subunit expression. Neuron 12, 1281–1289 (1994).

    Article  CAS  Google Scholar 

  9. Jonas, P. & Burnashev, N. Molecular mechanisms controlling calcium entry through AMPA-type glutamate receptor channels. Neuron 15, 987–990 (1995).

    Article  CAS  Google Scholar 

  10. Washburn, M.S., Numberger, M., Zhang, S. & Dingledine, R. Differential dependence on GluR2 expression of three characteristic features of AMPA receptors. J. Neurosci. 17, 9393–9406 (1997).

    Article  CAS  Google Scholar 

  11. Swanson, G.T., Kamboj, S.K. & Cull-Candy, S.G. Single-channel properties of recombinant AMPA receptors depend on RNA editing, splice variation, and subunit composition. J. Neurosci. 17, 58–69 (1997).

    Article  CAS  Google Scholar 

  12. Kamboj, S.K., Swanson, G.T. & Cull-Candy, S.G. Intracellular spermine confers rectification on rat calcium-permeable AMPA and kainate receptors. J. Physiol. (Lond.) 486, 297–303 (1995).

    Article  CAS  Google Scholar 

  13. Bowie, D. & Mayer, M.L. Inward rectification of both AMPA and kainate subtype glutamate receptors generated by polyamine-mediated ion channel block. Neuron 15, 453–462 (1995).

    Article  CAS  Google Scholar 

  14. Koh, D.S., Burnashev, N. & Jonas, P. Block of native Ca2+-permeable AMPA receptors in rat brain by intracellular polyamines generates double rectification. J. Physiol. (Lond.) 486, 305–312 (1995).

    Article  CAS  Google Scholar 

  15. Rozov, A. & Burnashev, N. Polyamine-dependent facilitation of postsynaptic AMPA receptors counteracts paired-pulse depression. Nature 401, 594–598 (1999).

    Article  CAS  Google Scholar 

  16. Greger, I.H., Khatri, L. & Ziff, E.B. RNA editing at Arg607 controls AMPA receptor exit from the endoplasmic reticulum. Neuron 34, 759–772 (2002).

    Article  CAS  Google Scholar 

  17. Jia, Z. et al. Enhanced LTP in mice deficient in the AMPA receptor GluR2. Neuron 17, 945–956 (1996).

    Article  CAS  Google Scholar 

  18. Feldmeyer, D. et al. Neurological dysfunctions in mice expressing different levels of the Q/R site-unedited AMPAR subunit GluR-B. Nat. Neurosci. 2, 57–64 (1999).

    Article  CAS  Google Scholar 

  19. Kawahara, Y. et al. Glutamate receptors: RNA editing and death of motor neurons. Nature 427, 801 (2004).

    Article  CAS  Google Scholar 

  20. Colbourne, F., Grooms, S.Y., Suzanne Zukin, R.S.Z., Alastair, M., Buchan, A.M. & Bennett, M.V.L. Hypothermia rescues hippocampal CA1 neurons and attenuates down-regulation of the AMPA receptor GluR2 subunit after forebrain ischemia. Proc. Natl. Acad. Sci. USA 100, 2906–2910 (2003).

    Article  CAS  Google Scholar 

  21. Liu, S. et al. Expression of Ca2+-permeable AMPA receptor channels primes cell death in transient forebrain ischemia. Neuron 43, 43–55 (2004).

    Article  Google Scholar 

  22. Fuchs, E.C. et al. Genetically altered AMPA-type glutamate receptor kinetics in interneurons disrupt long-range synchrony of gamma oscillation. Proc. Natl. Acad. Sci. USA 98, 3571–3576 (2001).

    Article  CAS  Google Scholar 

  23. Toth, K. & McBain, C.J. Afferent-specific innervation of two distinct AMPA receptor subtypes on single hippocampal interneurons. Nat. Neurosci. 1, 572–578 (1998).

    Article  CAS  Google Scholar 

  24. Rubio, M.E. & Wenthold, R.J. Glutamate receptors are selectively targeted to postsynaptic sites in neurons. Neuron 18, 939–950 (1997).

    Article  CAS  Google Scholar 

  25. Gardner, S.M., Trussell, L.O. & Oertel, D. Time course and permeation of synaptic AMPA receptors in cochlear nuclear neurons correlate with input. J. Neurosci. 19, 8721–8729 (1999).

    Article  CAS  Google Scholar 

  26. Ogoshi, F. & Weiss, J.H. Heterogeneity of Ca2+-permeable AMPA/kainate channel expression in hippocampal pyramidal neurons: fluorescence imaging and immunocytochemical assessment. J. Neurosci. 23, 10521–10530 (2003).

    Article  CAS  Google Scholar 

  27. Keinanen, K. et al. A family of AMPA-selective glutamate receptors. Science 249, 556–560 (1990).

    Article  CAS  Google Scholar 

  28. Petralia, R.S., Wang, Y.X., Mayat, E. & Wenthold, R.J. Glutamate receptor subunit 2-selective antibody shows a differential distribution of calcium-impermeable AMPA receptors among populations of neurons. J. Comp. Neurol. 385, 456–476 (1997).

    Article  CAS  Google Scholar 

  29. Liu, S.J. & Cull-Candy, S.G. Activity-dependent change in AMPA receptor properties in cerebellar stellate cells. J. Neurosci. 22, 3881–3889 (2002).

    Article  CAS  Google Scholar 

  30. Srivastava, S. et al. Novel anchorage of GluR2/3 to the postsynaptic density by the AMPA receptor-binding protein ABP. Neuron 21, 581–591 (1998).

    Article  CAS  Google Scholar 

  31. Xia, J., Chung, H.J., Wihler, C., Huganir, R.L. & Linden, D.J. Cerebellar long-term depression requires PKC-regulated interactions between GluR2/3 and PDZ domain-containing proteins. Neuron 28, 499–510 (2000).

    Article  CAS  Google Scholar 

  32. Matsuda, S., Mikawa, S. & Hirai, H. Phosphorylation of serine-880 in GluR2 by protein kinase C prevents its C terminus from binding with glutamate receptor-interacting protein. J. Neurochem. 73, 1765–1768 (1999).

    Article  CAS  Google Scholar 

  33. Chung, H.J., Xia, J., Scannevin, R.H., Zhang, X. & Huganir, R.L. Phosphorylation of the AMPA receptor subunit GluR2 differentially regulates its interaction with PDZ domain-containing proteins. J. Neurosci. 20, 7258–7267 (2000).

    Article  CAS  Google Scholar 

  34. Perez, J.L. et al. PICK1 targets activated protein kinase Calpha to AMPA receptor clusters in spines of hippocampal neurons and reduces surface levels of the AMPA-type glutamate receptor subunit 2. J. Neurosci. 21, 5417–5428 (2001).

    Article  CAS  Google Scholar 

  35. Hanley, J.G., Khatri, L., Hanson, P.I. & Ziff, E.B. NSF ATPase and α-/β-SNAPs disassemble the AMPA receptor-PICK1 complex. Neuron 34, 53–67 (2002).

    Article  CAS  Google Scholar 

  36. Lee, S.H., Liu, L., Wang, Y.T. & Sheng, M. Clathrin adaptor AP-2 and NSF interact with overlapping sites of GluR2 and play distinct roles in AMPA receptor trafficking and hippocampal LTD. Neuron 36, 661–674 (2002).

    Article  CAS  Google Scholar 

  37. Luthi, A. et al. Hippocampal LTD expression involves a pool of AMPARs regulated by the NSF-GluR2 interaction. Neuron 24, 389–399 (1999).

    Article  CAS  Google Scholar 

  38. Nishimune, A. et al. NSF binding to GluR2 regulates synaptic transmission. Neuron 21, 87–97 (1998).

    Article  CAS  Google Scholar 

  39. Song, I. et al. Interaction of the N-ethylmaleimide-sensitive factor with AMPA receptors. Neuron 21, 393–400 (1998).

    Article  CAS  Google Scholar 

  40. Noel, J. et al. Surface expression of AMPA receptors in hippocampal neurons is regulated by an NSF-dependent mechanism. Neuron 23, 365–376 (1999).

    Article  CAS  Google Scholar 

  41. Luscher, C. et al. Role of AMPA receptor cycling in synaptic transmission and plasticity. Neuron 24, 649–658 (1999).

    Article  CAS  Google Scholar 

  42. Dong, H., O'Brien,, R.J., Fung, E.T., Lanahan, A.A., Worley, P.F. & Huganir, R.L. GRIP: a synaptic PDZ domain-containing protein that interacts with AMPA receptors. Nature 386, 279–284 (1997).

    Article  CAS  Google Scholar 

  43. Osten, P. et al. Mutagenesis reveals a role for ABP/GRIP binding to GluR2 in synaptic surface accumulation of the AMPA receptor. Neuron 27, 313–325 (2000).

    Article  CAS  Google Scholar 

  44. Osten, P. et al. The AMPA receptor GluR2 C terminus can mediate a reversible, ATP-dependent interaction with NSF and α- and β-SNAPs. Neuron 21, 99–110 (1998).

    Article  CAS  Google Scholar 

  45. Duprat, F., Daw, M., Lim, W., Collingridge, G. & Isaac, J. GluR2 protein-protein interactions and the regulation of AMPA receptors during synaptic plasticity. Phil. Trans. R. Soc. Lond. B 358, 715–720 (2003).

    Article  CAS  Google Scholar 

  46. Daw, M.I. et al. PDZ proteins interacting with C-terminal GluR2/3 are involved in a PKC-dependent regulation of AMPA receptors at hippocampal synapses. Neuron 28, 873–886 (2000).

    Article  CAS  Google Scholar 

  47. Tardin, C., Cognet, L., Bats, C., Lounis, B. & Choquet, D. Direct imaging of lateral movements of AMPA receptors inside synapses. EMBO J. 22, 4656–4665 (2003).

    Article  CAS  Google Scholar 

  48. Linden, D.J. The expression of cerebellar LTD in culture is not associated with changes in AMPA-receptor kinetics, agonist affinity, or unitary conductance. Proc. Natl. Acad. Sci. USA 98, 14066–14071 (2001).

    Article  CAS  Google Scholar 

  49. Terashima, A. et al. Regulation of synaptic strength and AMPA receptor subunit composition by PICK1. J. Neurosci. 24, 5381–5390 (2004).

    Article  CAS  Google Scholar 

  50. Gardner, S.M. et al. Calcium-permeable AMPA receptor plasticity is mediated by subunit-specific interactions with PICK1 and NSF. Neuron 45, 903–915 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Mok and C. Gebhardt for helpful discussions. This work was supported by a Wellcome Trust Programme Grant and a Royal Society-Wolfson Research Award to S.G.C.-C., and a US National Science Foundation grant to S.J.L. S.J.L. received a Wellcome Trust Travelling Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Siqiong June Liu or Stuart G Cull-Candy.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Proposed model for activity-dependent trafficking of synaptic AMPA receptor subtypes in stellate cells. (PDF 34 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, S., Cull-Candy, S. Subunit interaction with PICK and GRIP controls Ca2+ permeability of AMPARs at cerebellar synapses. Nat Neurosci 8, 768–775 (2005). https://doi.org/10.1038/nn1468

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1468

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing