Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

NSAIDs inhibit αVβ3 integrin-mediated and Cdc42/Rac-dependent endothelial-cell spreading, migration and angiogenesis

Abstract

Cyclooxygenase-2 (COX-2), a key enzyme in arachidonic acid metabolism, is overexpressed in many cancers. Inhibition of COX-2 by nonsteroidal anti-inflammatory drugs (NSAIDs) reduces the risk of cancer development in humans and suppresses tumor growth in animal models. The anti-cancer effect of NSAIDs seems to involve suppression of tumor angiogenesis, but the underlying mechanism is not completely understood. Integrin αVβ3 is an adhesion receptor critically involved in mediating tumor angiogenesis. Here we show that inhibition of endothelial-cell COX-2 by NSAIDs suppresses αVβ3-dependent activation of the small GTPases Cdc42 and Rac, resulting in inhibition of endothelial-cell spreading and migration in vitro and suppression of fibroblast growth factor-2–induced angiogenesis in vivo. These results establish a novel functional link between COX-2, integrin αVβ3 and Cdc42-/Rac-dependent endothelial-cell migration. Moreover, they provide a rationale to the understanding of the anti-angiogenic activity of NSAIDs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: NSAIDs inhibit αVβ3-mediated endothelial-cell spreading and migration.
Figure 2: Dose-response and COX-2 expression in HUVECs.
Figure 3: PGE2 and PGI2 reverse the suppression of HUVEC spreading and migration on vitronectin caused by NS-398.
Figure 4: Inhibition of COX-2 interferes with integrin-post receptor events.
Figure 5: NS-398 and indomethacin suppress αVβ3-dependent activation of Cdc42 and Rac.
Figure 6: Retroviral delivery of constitutive active Rac reverses the suppression of FGF2-induced angiogenesis caused by NS-398 in the murine Matrigel angiogenesis assay.

Similar content being viewed by others

References

  1. Hanahan, D. & Folkman, J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86, 353–364 (1996).

    Article  Google Scholar 

  2. Carmeliet, P. & Jain, R.K. Angiogenesis in cancer and other diseases. Nature 407, 249–257 (2000).

    Article  Google Scholar 

  3. Yancopoulos, G.D. et al. Vascular-specific growth factors and blood vessel formation. Nature 407, 242–248 (2000).

    Article  Google Scholar 

  4. Williams, C.S., Mann, M. & DuBois, R.N. The role of cyclooxygenases in inflammation, cancer, and development. Oncogene 18, 7908–7916 (1999).

    Article  Google Scholar 

  5. Giardiello, F.M. et al. Treatment of colonic and rectal adenomas with sulindac in familial adenomatous polyposis. N. Engl. J. Med. 328, 1313–1316 (1993).

    Article  Google Scholar 

  6. Shiff, S.J. & Rigas, B. The role of cyclooxygenase inhibition in the antineoplastic effects of nonsteroidal antiinflammatory drugs (NSAIDs). J. Exp. Med. 190, 445–450 (1999).

    Article  Google Scholar 

  7. Taketo, M.M. Cyclooxygenase-2 inhibitors in tumorigenesis (part I). J. Natl. Cancer Inst. 90, 1529–1536 (1998).

    Article  Google Scholar 

  8. Dubois, R.N. et al. Cyclooxygenase in biology and disease. FASEB J. 12, 1063–1073 (1998).

    Article  Google Scholar 

  9. Coyne, D.W., Nickols, M., Bertrand, W. & Morrison, A.R. Regulation of mesangial cell cyclooxygenase synthesis by cytokines and glucocorticoids. Am. J. Physiol. 263, F97–102 (1992).

    PubMed  Google Scholar 

  10. Simmons, D.L., Levy, D.B., Yannoni, Y. & Erikson, R.L. Identification of a phorbol ester-repressible v-src-inducible gene. Proc. Natl. Acad. Sci. USA 86, 1178–1182 (1989).

    Article  Google Scholar 

  11. Oshima, M. et al. Suppression of intestinal polyposis in Apc Δ716 knockout mice by inhibition of cyclooxygenase 2 (COX-2). Cell 87, 803–809 (1996).

    Article  Google Scholar 

  12. Taketo, M.M. Cyclooxygenase-2 inhibitors in tumorigenesis (Part II). J. Natl. Cancer Inst. 90, 1609–1620 (1998).

    Article  Google Scholar 

  13. Williams, C.S., Tsujii, M., Reese, J., Dey, S.K. & DuBois, R.N. Host cyclooxygenase-2 modulates carcinoma growth. J. Clin. Invest. 105, 1589–1594 (2000).

    Article  Google Scholar 

  14. Steinbach, G. et al. The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis. N. Engl. J. Med. 342, 1946–1952 (2000).

    Article  Google Scholar 

  15. Tsujii, M. et al. Cyclooxygenase regulates angiogenesis induced by colon cancer cells. Cell 93, 705–716 (1998).

    Article  Google Scholar 

  16. Masferrer, J.L. et al. Antiangiogenic and antitumor activities of cyclooxygenase-2 inhibitors. Cancer Res. 60, 1306–1311 (2000).

    PubMed  Google Scholar 

  17. Dominguez-Jimenez, C., Diaz-Gonzalez, F., Gonzalez-Alvaro, I., Cesar, J.M. & Sanchez-Madrid, F. Prevention of αII(b)β3 activation by non-steroidal antiinflammatory drugs. FEBS Lett. 446, 318–322 (1999).

    Article  Google Scholar 

  18. Garcia-Vicuna, R. et al. Prevention of cytokine-induced changes in leukocyte adhesion receptors by nonsteroidal antiinflammatory drugs from the oxicam family. Arthritis Rheum. 40, 143–153 (1997).

    Article  Google Scholar 

  19. Brooks, P.C. et al. Integrin α v β 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 79, 1157–1164 (1994).

    Article  Google Scholar 

  20. Smith, C.J. et al. Pharmacological analysis of cyclooxygenase-1 in inflammation. Proc. Natl. Acad. Sci. USA 95, 13313–13318 (1998).

    Article  Google Scholar 

  21. Futaki, N. et al. NS-398, a new anti-inflammatory agent, selectively inhibits prostaglandin G/H synthase/cyclooxygenase (COX-2) activity in vitro. Prostaglandins 47, 55–59 (1994).

    Article  Google Scholar 

  22. Ruegg, C. et al. Evidence for the involvement of endothelial cell integrin αVβ3 in the disruption of the tumor vasculature induced by TNF and IFN-γ. Nature Med. 4, 408–414 (1998).

    Article  Google Scholar 

  23. Hoper, M.M. et al. Prostaglandins induce vascular endothelial growth factor in a human monocytic cell line and rat lungs via cAMP. Am. J. Respir. Cell. Mol. Biol. 17, 748–756 (1997).

    Article  Google Scholar 

  24. Jones, M.K. et al. Inhibition of angiogenesis by nonsteroidal anti-inflammatory drugs: insight into mechanisms and implications for cancer growth and ulcer healing. Nature Med. 5, 1418–1423 (1999).

    Article  Google Scholar 

  25. Daniel, T.O., Liu, H., Morrow, J.D., Crews, B.C. & Marnett, L.J. Thromboxane A2 is a mediator of cyclooxygenase-2-dependent endothelial migration and angiogenesis. Cancer Res. 59, 4574–4577 (1999).

    Google Scholar 

  26. Nie, D. et al. Thromboxane A(2) regulation of endothelial cell migration, angiogenesis, and tumor metastasis. Biochem. Biophys. Res. Commun. 267, 245–251 (2000).

    Article  Google Scholar 

  27. Frelinger, A.d. et al. Selective inhibition of integrin function by antibodies specific for ligand-occupied receptor conformers. J. Biol. Chem. 265, 6346–6352 (1990).

    PubMed  Google Scholar 

  28. Honda, S. et al. Ligand binding to integrin αvβ3 requires tyrosine 178 in the αv subunit. Blood 97, 175–182 (2001).

    Article  Google Scholar 

  29. Byzova, T.V. & Plow, E.F. Activation of αVβ3 on vascular cells controls recognition of prothrombin. J. Cell. Biol. 143, 2081–2092 (1998).

    Article  Google Scholar 

  30. Klemke, R.L., Yebra, M., Bayna, E.M. & Cheresh, D.A. Receptor tyrosine kinase signaling required for integrin αvβ5-directed cell motility but not adhesion on vitronectin. J. Cell. Biol. 127, 859–866 (1994).

    Article  Google Scholar 

  31. Price, L.S., Leng, J., Schwartz, M.A. & Bokoch, G.M. Activation of Rac and Cdc42 by integrins mediates cell spreading. Mol. Biol. Cell. 9, 1863–1871 (1998).

    Article  Google Scholar 

  32. Ridley, A.J., Paterson, H.F., Johnston, C.L., Diekmann, D. & Hall, A. The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70, 401–410 (1992).

    Article  Google Scholar 

  33. Skopinska-Rozewska, E. et al. Inhibition of angiogenesis by sulindac and its sulfone metabolite (FGN-1): a potential mechanism for their antineoplastic properties. Int. J. Tissue React. 20, 85–89 (1998).

    PubMed  Google Scholar 

  34. Zhang, L., Yu, J., Park, B.H., Kinzler, K.W. & Vogelstein, B. Role of BAX in the apoptotic response to anticancer agents. Science 290, 989–992 (2000).

    Article  Google Scholar 

  35. He, T.C., Chan, T.A., Vogelstein, B. & Kinzler, K.W. PPARδ is an APC-regulated target of nonsteroidal anti-inflammatory drugs. Cell 99, 335–345. (1999).

    Article  Google Scholar 

  36. Yamamoto, Y., Yin, M.J., Lin, K.M. & Gaynor, R.B. Sulindac inhibits activation of the NF-kappaB pathway. J. Biol. Chem. 274, 27307–27314 (1999).

    Article  Google Scholar 

  37. Warner, T.D. et al. Nonsteroid drug selectivities for Cyclooxygenase-1 rather than cyclo- oxygenase-2 are associated with human gastrointestinal toxicity: A full in vitro analysis. Proc Natl Acad Sci U S A 96, 7563–7568. (1999).

    Article  Google Scholar 

  38. Williams, C.S. et al. Elevated cyclooxygenase-2 levels in Min mouse adenomas. Gastroenterology 111, 1134–1140 (1996).

    Article  Google Scholar 

  39. Hull, M.A. et al. Cyclooxygenase 2 is up-regulated and localized to macrophages in the intestine of Min mice. Br. J. Cancer 79, 1399–1405 (1999).

    Article  Google Scholar 

  40. Sano, H. et al. Expression of cyclooxygenase-1 and -2 in human colorectal cancer. Cancer Res. 55, 3785–3789 (1995).

    PubMed  Google Scholar 

  41. Eliceiri, B.P., Klemke, R., Stromblad, S. & Cheresh, D.A. Integrin αVβ3 requirement for sustained mitogen-activated protein kinase activity during angiogenesis. J. Cell Biol. 140, 1255–1263 (1998).

    Article  Google Scholar 

  42. Soldi, R. et al. Role of αVβ3 integrin in the activation of vascular endothelial growth factor receptor-2. EMBO J. 18, 882–892 (1999).

    Article  Google Scholar 

  43. Stromblad, S., Becker, J.C., Yebra, M., Brooks, P.C. & Cheresh, D.A. Suppression of p53 activity and p21WAF1/CIP1 expression by vascular cell integrin αVβ3 during angiogenesis. J. Clin. Invest. 98, 426–433 (1996).

    Article  Google Scholar 

  44. Eliceiri, B.P. et al. Selective requirement for Src kinases during VEGF-induced angiogenesis and vascular permeability. Mol. Cell 4, 915–924. (1999).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank F.J. Lejeune for continuous support, P. Saudan, M. Ginsberg and S. Klein for providing reagents, R. Stupp and A. Wilson for discussion and critical reading of the manuscript, J. Bamat for help with immunohistological techniques and P. Dubied for photo artwork. This work was supported by grants from the Swiss National Science Foundation (31-52946.97), the Swiss Cancer League, the Leenaards Foundation and the BCV Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Curzio Rüegg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dormond, O., Foletti, A., Paroz, C. et al. NSAIDs inhibit αVβ3 integrin-mediated and Cdc42/Rac-dependent endothelial-cell spreading, migration and angiogenesis. Nat Med 7, 1041–1047 (2001). https://doi.org/10.1038/nm0901-1041

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0901-1041

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing