Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

γδ T cell-induced nitric oxide production enhances resistance to mucosal candidiasis

Abstract

Despite the prevalence of γδ T cells in mucosae that are typically colonized by Candida albicans, little is known of the possible role of these cells in resistance to candidiasis. A sharp increase in the number of γδ T cells and macrophages following intraperitoneal inoculation of mice with C. albicans led us to examine the role of these cells in the immune response to C. albicans. We show that the γδT cells enhance macrophage nitric oxide (NO) production and anti-candida activity, in vitro. We also propose that the γδ T cells regulate macrophage function during candidiasis in vivo as well, because depletion of these cells abrogated inducible NO synthase expression in mucosae and enhanced murine susceptibility to candidiasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Sternberg, S. The emerging fungal threat. Science 266, 1632–1634 (1994).

    CAS  PubMed  Google Scholar 

  2. Bodey, G.P., Bolivar, R. & Fainstein, V. Infectious complications in leukemic patients. Semin. Hematol. 19, 196–226 (1992).

    Google Scholar 

  3. Romani, L. et al. Neutralization of IL-10 up-regulates nitric oxide production and protects susceptible mice from challenge with C. albicam . J. Immun. 152, 3514–3521 (1994).

    CAS  PubMed  Google Scholar 

  4. Cenci, E. et al. Interleukin-4 and interleukin-10 inhibit nitric oxide-dependent macrophage killing of Candida albicans . Eur. J. Immun. 23, 1034–1038 (1993).

    CAS  Google Scholar 

  5. Vazquez-Torres, A., Jones-Carson, J. & Balish, E. Candidacidal activity of macrophages from immunocompetent and congenitally immunodeficient mice. J. infect. Dis. 170, 180–188 (1994).

    CAS  PubMed  Google Scholar 

  6. Tao, X. & Stout, R.D. T cell-mediated cognate signaling of nitric oxide production by macrophages. Requirements for macrophage activation by plasma membranes isolated from T. cells. Eur. J. Immun. 23, 2916–2921 (1993).

    CAS  Google Scholar 

  7. Maródi, L. et al. Enhancement of macrophage candidacidal activity by interferon-γ increased phagocytosis, killing, and calcium signal mediated by a decreased number of mannose receptors. J. clin. Invest. 91, 2596–2601 (1993).

    PubMed  PubMed Central  Google Scholar 

  8. Yamamoto, S., Russ, F., Teixeira, H.C., Conradt, P. & Kaufmann, S.H.E. Listeria monocytogenes-induced gamma interferon secretion by intestinal intraepithelial γδ T lymphocytes. Infect. Immun. 61, 2154–2161 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Chan, J., Xing, Y., Magliozzo, R.S. & Bloom, B.R. Killing of virulent Mycobac-terium tuberculosis by reactive nitrogen intermediates produced by activated murine macrophages. J. exp. Med. 175, 1111–1122 (1992).

    CAS  PubMed  Google Scholar 

  10. Cantorna, M. & Balish, E. Role of CD4+ lymphocytes in resistance to mucosal candidiasis. Infect. Immun. 59, 2447–2455 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Bistoni, F. et al. Mucosal and systemic T helper cell function after intragastric colonization of adult mice with Candida albicans . J. infect. Dis. 168, 1449–57 (1993).

    CAS  PubMed  Google Scholar 

  12. Cole, G.T. et al. Retrovirus-induced immunodeficiency in mice exacerbates gastrointestinal candidiasis. Infect. Immun. 60, 4168–4178 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Balish, E., Filutowicz, H. & Oberley, T.D. Correlates of cell-mediated immunity in Candida albicans-colonized gnotobiotic mice. Infect. Immun. 58, 107–113 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Jensen, J., Vazquez-Torres, A. & Balish, E. Poly (IC)-induced interferons enhance susceptibility of SCID mice to systemic candidiasis. Infect. Immun. 60, 4549–4557 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Cutler, J.E. Acute systemic candidiasis in normal and congenitally thymic-deficient (nude) mice. J. Reticuloendothel. Soc. 19, 121–124 (1976).

    CAS  PubMed  Google Scholar 

  16. Narayanan, R., Joyce, W.A. & Greenfield, R.A. Gastrointestinal candidiasis in a murine model of severe combined immunodeficiency syndrome. Infect. Immun. 59, 2116–2119 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Beckerman, K.P. et al. Release of nitric oxide during the T cell-independent pathway of macrophage activation. J. Immun. 150, 888–895 (1993).

    CAS  PubMed  Google Scholar 

  18. Romani, L. et al. Natural killer cells do not play a dominant role in CD4+ subset differentiation in Candida albicans-infected mice. Infect. Immun. 61, 3769–3774 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Greenfield, R.A., Abrams, V.L., Crawford, D.L. & Kuhls, T.L. Effect of abrogation of natural killer cell activity on the course of candidiasis induced by intraperitoneal administration and gastrointestinal candidiasis in mice with severe combined immunodeficiency. Infect. Immun. 61, 2520–2525 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Skeen, M.J. & Ziegler, H.K. Intercellular interactions and cytokine responsiveness of peritoneal α/β and γ/δ T cells from Listeria-infected mice: Synergistic effects of interleukin 1 and 7 on γ/δ T cells. J. exp. Med. 178, 985–996 (1993).

    CAS  PubMed  Google Scholar 

  21. Chen, J. et al. Immunoglobulin gene rearrangement in B cell deficient mice generated by targeted deletion of the JH locus. Int. Immun. 5, 647–656 (1993).

    CAS  PubMed  Google Scholar 

  22. Koller, B.H., Marrack, P., Kappler, J.W. & Smithies, O. Normal development of mice deficient in β2M, MHC class I proteins, and CD8+ T cells. Science 248, 1227–1230 (1990).

    CAS  PubMed  Google Scholar 

  23. Lundqvist, C., Baranov, V., Teglund, S., Hammarström, S. & Hammarström, M.L. Cytokine profile and ultrastrucrure of intraepithelial γδ T cells in chronically inflamed human gingiva suggest a cytotoxic effector function. J. Immun. 153, 2302–2312 (1994).

    CAS  PubMed  Google Scholar 

  24. Follows, G.A., Munk, M.E., Gatrill, A.J., Convadt, P. & Kaufmann, S.H. Gamma interferon and interleukin 2, but not interleukin 4, are detectable in gamma-delta T cell cultures after activation with bacteria. Infect. Immun. 60, 1229–1231 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. van der Heyde, H.C., Elloso, M.M., Roopenian, D.C., Manning, D.D. & Wiedanz, W.P. Expansion of the CD4, CD8. gamma delta T cell subset in the spleens of mice during non-lethal blood-stage malaria. Eur. J. Immun. 23, 1846–1850 (1993).

    CAS  Google Scholar 

  26. Lorsbach, R.B. & Russell, S.W. A specific sequence of stimulation is required to induce synthesis of the antimicrobial molecule nitric oxide by mouse macrophages. Infect. Immun. 60, 2133–2135 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. LeFrancois, L. & Goodman, T. In vivo modulation of cytolytic activity and Thy-1 expression of TCR-γδ+ intraepithelial lymphocytes. Science 243, 1716–1718 (1989).

    CAS  PubMed  Google Scholar 

  28. Mixter, P.F., Camerini, V., Stone, B.J., Miller, V.L. & Kronenberg, M. Mouse T lymphocytes that express a gamma delta T-cell antigen receptor contribute to resistance to Salmonella infection in vivo. Infect. Immun. 62, 4618–4621 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Chakir, J., Côté, L., Coulombe, L. & Deslauriers, N. Differential pattern of infection and immune response during experimental oral candidiasis in BALB/c and DBA/2 (H-2d) mice. Oral Micmbiol. Immun. 9, 88–94 (1994).

    CAS  Google Scholar 

  30. Tanowitz, H.B., Simon, D. & Wittner, M. Medical management of AIDS patients. Gastrointestinal manifestations. Med. Clin. N. Am. 76, 45–62 (1992).

    CAS  PubMed  Google Scholar 

  31. Hiromatsu, K. et al. A protective role of γ/δ T cells in primary infection with Listeria monocytogenes in mice. J. exp. Med. 175, 49–56 (1992).

    CAS  PubMed  Google Scholar 

  32. Stenger, S., Thüring, H., Röllinghoff, M. & Bogdan, C. Tissue expression of in-ducible nitric oxide synthase is closely associated with resistance to Leishmania major . J. exp. Med. 180, 783–793 (1994).

    CAS  PubMed  Google Scholar 

  33. Boockvar, K.S. et al. Nitric oxide produced during murine listeriosis is protective. Infect. Immun. 62, 1089–1100 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Rosat, J.P., MacDonald, H.R. & Louis, J.A. A role for γδ+ T cells during experimental infection of mice with Leishmania major . J. Immun. 150, 550–555 (1993).

    CAS  PubMed  Google Scholar 

  35. Mombaerts, P., Arnoldi, J., Russ, F., Tonegawa, S. & Kaufmann, S.H.E. Different roles of αβ and γδ T cells in immunity against an intracellular bacterial pathogen. Nature 365, 53–56 (1993).

    CAS  PubMed  Google Scholar 

  36. Fu, Y.X. et al. Immune protection and control of inflammatory tissue necrosis by γδ T cells. J. Immun. 153, 3101–3115 (1994).

    CAS  PubMed  Google Scholar 

  37. Vasquez-Torres, A., Jones-Carson, J., Warner, T. & Balish, E. Nitric oxide enhances resistance of SCID mice to mucosal candidiasis. J. infect. Dis. (in the press).

  38. Di Rosa, R. et al. Changes in various immunological parameters in patients with recurrent vaginal candidiasis. Boll. dell. 1st. Sieroterapico Milanese 70, 499–504 (1991–2).

    Google Scholar 

  39. Cantorna, M., Mook, D. & Balish, E. Resistance to congenitally immunodeficient gnotobiotic mice to vaginal candidiasis. Infect. Immun. 58, 3813–3815 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Fidel, P.L. Jr., Lynch, M.E. & Sobel, J. Effects of preinduced Candida-specific systemic cell-mediated immunity on experimental vaginal candidiasis. Infect. Immun. 62, 1032–1038 (1994).

    PubMed  PubMed Central  Google Scholar 

  41. Haas, W., Pereira, P. & Tonegawa, S. Gamma/delta cells. Annu. Rev. Immun. 11, 637–685 (1993).

    CAS  PubMed  Google Scholar 

  42. McMenamin, C., Pimm, C., Mckersey, M. & Holt, P.G. Regulation of IgE responses to inhaled antigen in mice by antigen-specific γδ T cells. Science 265, 1869–1871 (1994.

    CAS  PubMed  Google Scholar 

  43. D.A., Ferrick, M.D., Schrenzel, Mulvania, T., Haiech, B., Ferlin, W.G. & Lepper, H. Differential Production of Interferon-γ and Interleukin-4 in response to Thl and Th2-stimulating pathogens by γδ cells in vivo Nature 373, 255–257 (1995).

    CAS  PubMed  Google Scholar 

  44. Balish, E., Jensen, J., Warner, T., Brekke, J. & Leonard, B. Mucosal and disseminated candidiasis in gnotobiotic SCID mice. J. Med. Vet. Mycol. 31, 143–154 (1993).

    CAS  PubMed  Google Scholar 

  45. Van der Heyde, H.C., Manning, D.D. & Weidanz, W.P. Role of CD4+ T cells in the expansion of the CD4, CD8 γδ T cell subset in the spleens of mice during blood-stage malaria. J. Immun. 151, 6311–6317 (1993).

    CAS  PubMed  Google Scholar 

  46. Green, L.C. et al. Analysis of nitrate, nitrite, and (15N) nitrate in biological fluids. Anal. Biochem. 126, 131–138 (1982).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Department of Surgical Pathology, University of Wisconsin Medical School, Madison, Wisconsin, 53706-1532, USA

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones-Carson, J., Vazquez-Torres, A., van der Heyde, H. et al. γδ T cell-induced nitric oxide production enhances resistance to mucosal candidiasis. Nat Med 1, 552–557 (1995). https://doi.org/10.1038/nm0695-552

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0695-552

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing