Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Building the translational highway: toward new partnerships between academia and the private sector

At the crossroads of academia and industry, translational research provides the vehicle for the application of medical discoveries and developments. A productive and expanded relationship between these two sectors is essential for the continued success in translating basic research findings to the clinic.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Commercial value chain and revenue creation is a long-term investment.

Courtesy of Norman Hardman and George Radda.

Figure 2

Courtesy of Claude Lenfant, NIH.

References

  1. Minami, E., Reinecke, H. & Murry, C.E. Skeletal muscle meets cardiac muscle. Friends or foes? J. Am. Coll. Cardiol. 41, 1084–1086 (2003).

    Article  Google Scholar 

  2. Varki, A. & Rosenberg, L.E. Emerging opportunities and career paths for the young physician-scientist. Nat. Med. 8, 437–439 (2002)

    Article  CAS  Google Scholar 

  3. Beachy, R.N. IP policies and serving the public. Science 299, 473 (2003).

    Article  CAS  Google Scholar 

  4. Berry, C., Murdoch, D.R. & McMurray, J.J. Economics of chronic heart failure. Eur. J. Heart Fail. 3, 283–291 (2001).

    Article  CAS  Google Scholar 

  5. Soonpaa, M.H. et al. Formation of nascent intercalated disks between grafted fetal cardiomyocytes and host myocardium. Science 264, 98–101 (1994).

    Article  CAS  Google Scholar 

  6. Reinecke, H. et al. Survival, integration, and differentiation of cardiomyocyte grafts. A study in normal and injured rat hearts. Circulation 100, 193–202 (1999).

    Article  CAS  Google Scholar 

  7. Scorsin, M. et al. Does transplantation of cardiomyocytes improve function of infarcted myocardium? Circulation 96, 188–193 (1997).

    Google Scholar 

  8. Scorsin, M. et al. Comparison of the effects of fetal cardiomyocytes and skeletal myoblast transplantation on postinfarct left ventricular function. J. Thorac. Cardiovasc. Surg. 119, 1169–1175 (2000).

    Article  CAS  Google Scholar 

  9. Deb, A. et al. Bone marrow-derived cardiomyocytes are present in adult human heart. A study of gender-mismatched bone marrow transplantation patients. Circulation 107, 1247–1249 (2003).

    Article  Google Scholar 

  10. Laflamme, M., Myerson, D., Saffitx, J. & Murry, C.E. Evidence for cardiomyocyte repopulation by extracardiac progenitors in transplanted human hearts. Circ. Res. 90, 634–640 (2002).

    Article  CAS  Google Scholar 

  11. Quaini, F. et al. Chimerism of the transplanted heart. N. Engl. J. Med. 346, 5–15 (2002).

    Article  Google Scholar 

  12. Toma, C. et al. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 105, 93–98 (2002).

    Article  Google Scholar 

  13. Jackson, K.A. et al. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J. Clin. Invest. 107, 1395–1402 (2001).

    Article  CAS  Google Scholar 

  14. Orlic, D. et al. Bone marrow cells regenerate myocardium. Nature 410, 701–705 (2001).

    Article  CAS  Google Scholar 

  15. Orlic, D. et al. Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc. Natl. Acad. Sci. USA 98, 10344–10349 (2001).

    Article  CAS  Google Scholar 

  16. Kocher, A.A. et al. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat. Med. 7, 430–436 (2001).

    Article  CAS  Google Scholar 

  17. Assmus, B. et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI). Circulation 106, 3009–3017 (2002).

    Article  Google Scholar 

  18. Strauer, B.E. et al. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 106, 1913–1918 (2002).

    Article  Google Scholar 

  19. Stamm, C. et al. Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet 361, 45–46 (2003).

    Article  Google Scholar 

  20. Tse, H.F. et al. Angiogenesis in ischaemic myocardium by intramyocardial autologous bone marrow mononuclear cell transplantation. Lancet 361, 47–48 (2003).

    Article  Google Scholar 

  21. Mauro, A. Satellite cell of skeletal muscle fibers. J. Biophys. Biochem. Cytol. 9, 493–495 (1961).

    Article  CAS  Google Scholar 

  22. Marelli, D. et al. Cell transplantation for myocardial repair: an experimental approach. Cell Transplant. 1, 383–390 (1992).

    Article  CAS  Google Scholar 

  23. Murry, C.E. et al. Skeletal myoblast transplantation for repair of myocardial necrosis. J. Clin. Invest. 98, 2512–2523 (1996).

    Article  CAS  Google Scholar 

  24. Taylor, D.A. et al. Regenerating functional myocardium: improved performance after skeletal myoblast transplantation. Nat. Med. 4, 929–933 (1998).

    Article  CAS  Google Scholar 

  25. Pouzet, B. et al. Intramyocardial transplantation of autologous myoblasts: can tissue processing be optimized? Circulation 102, III210–III215 (2000).

    Article  CAS  Google Scholar 

  26. Pouzet, B. et al. Factors affecting functional outcome following autologous skeletal myoblast transplantation. Ann. Thorac. Surg. 71, 844–850 (2001).

    Article  CAS  Google Scholar 

  27. Pouzet, B. et al. Is skeletal myoblast transplantation clinically relevant in the era of angiotensin-converting enzyme inhibitors? Circulation 104, I223–I288 (2001).

    Article  CAS  Google Scholar 

  28. Reinecke, H., Poppa, V. & Murry, C.E. Skeletal muscle stem cells do not transdifferentiate into cardiomyocytes after cardiac grafting. J. Mol. Cell. Cardiol. 34, 241–249 (2002).

    Article  CAS  Google Scholar 

  29. Rajnoch, C. et al. Cellular therapy reverses myocardial dysfunction. J. Thorac. Cardiovasc. Surg. 121, 871–878 (2001).

    Article  CAS  Google Scholar 

  30. Ghostine, S. et al. Long-term efficacy of myoblast transplantation on regional structure and function after myocardial infarction. Circulation 106, I131–I136 (2002).

    PubMed  Google Scholar 

  31. Al Attar, N. et al. Long-term (1 year) functional and histological results of autologous skeletal muscle cells transplantation in rat. Cardiovasc. Res. 58, 142–148 (2003).

    Article  CAS  Google Scholar 

  32. Menasché, P. et al. First successful clinical myoblast transplantation for heart failure. Lancet 357, 279–280 (2001).

    Article  Google Scholar 

  33. Menasché, P. et al. Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. J. Am. Coll. Cardiol. 41, 1078–1083 (2003).

    Article  Google Scholar 

  34. Hagège, A. et al. Viability and differentiation of autologous skeletal myoblast grafts in ischaemic cardiomyopathy. Lancet 361, 491–492 (2003).

    Article  Google Scholar 

  35. Pagani, F.D. et al. Autologous skeletal myoblasts transplanted to ischemia-damaged myocardium in humans. J. Am. Coll. Cardiol. 41, 879–888 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ketty Schwartz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwartz, K., Vilquin, JT. Building the translational highway: toward new partnerships between academia and the private sector. Nat Med 9, 493–495 (2003). https://doi.org/10.1038/nm0503-493

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0503-493

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing