Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The nonimmunoglobulin portion of λ5 mediates cell-autonomous pre-B cell receptor signaling

Abstract

The pre-B cell receptor (preBCR), composed of μ immunoglobulin (Ig) and surrogate light chains, signals large 'preB-II' cells to proliferate in the apparent absence of ligands or cooperating cells. We deleted the N-terminal, nonimmunoglobulin (nonlg) portion of λ5, or mutated seven arginine residues in it to serine residues. PreBCRs with such mutant λ5 proteins showed increased cell surface representation and a diminished rate of aggregation and internalization. Tyrosine phosphorylation of preBCR complexes containing mutant λ5 proteins was abolished. These results indicate that the nonIg portion of λ5, and the seven arginine residues in it, are needed for signal transduction, and that signaling could be cell autonomous. We propose two models to explain the apparently constitutive, ligand-independent signal-transducing capacity of the preBCR.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structures of wild-type and mutant forms of λ5.
Figure 2: Surface expression of preBCR in Abelson virus–transformed λ5−/− pre-B cells.
Figure 3: Confocal fluorescence microscopy of preBCR deposition on the surface of preB cells.
Figure 4: Comparison of Endo H sensitivity, receptor internalization rate and tyrosine phosphorylation of wild-type and mutant preBCRs.
Figure 5: Wild-type preBCR forms large aggregates.
Figure 6: Hypothetical models for preB cell autonomous cross-linking of preBCR by electrostatic interaction of nonlg domains of λ5.

Similar content being viewed by others

References

  1. Melchers, F. et al. Repertoire selection by pre-B-cell receptors and B-cell receptors, and genetic control of B-cell development from immature to mature B cells. Immunol. Rev. 175, 33–46 (2000).

    Article  CAS  Google Scholar 

  2. Melchers, F. Fit for life in the immune system? Surrogate L chain tests H chains that test L chains. Proc. Natl. Acad. Sci. USA 96, 2571–2573 (1999).

    Article  CAS  Google Scholar 

  3. Karasuyama, H., Kudo, A. & Melchers, F. The proteins encoded by the VpreB and λ5 pre-B cell-specific genes can associate with each other and with μ heavy chain. J. Exp. Med. 172, 969–972 (1990).

    Article  CAS  Google Scholar 

  4. Tsubata, T. & Reth, M. The products of pre-B cell-specific genes (λ5 and VpreB) and the immunoglobulin μ chain form a complex that is transported onto the cell surface. J. Exp. Med. 172, 973–976 (1990).

    Article  CAS  Google Scholar 

  5. Melchers, F. et al. The surrogate light chain in B-cell development. Immunol. Today 14, 60–68 (1993).

    Article  CAS  Google Scholar 

  6. Gauthier, L., Lemmers, B., Guelpa-Fonlupt, V., Fougereau, M. & Schiff, C. μ-surrogate light chain physicochemical interactions of the human preB cell receptor: implications for VH repertoire selection and cell signaling at the preB cell stage. J. Immunol. 162, 41–50 (1999).

    CAS  PubMed  Google Scholar 

  7. Guelpa-Fonlupt, V. et al. The human pre-B cell receptor: structural constraints for a tentative model of the pseudo-light (ΨL) chain. Mol. Immunol. 31, 1099–1108 (1994).

    Article  CAS  Google Scholar 

  8. Minegishi, Y., Hendershot, L.M. & Conley, M.E. Novel mechanisms control the folding and assembly of λ5/14.1 and VpreB to produce an intact surrogate light chain. Proc. Natl. Acad. Sci. USA 96, 3041–3046 (1999).

    Article  CAS  Google Scholar 

  9. Flemming, A., Brummer, T., Reth, M. & Jumaa, H. The adaptor protein SLP-65 acts as a tumor suppressor that limits pre-B cell expansion. Nat. Immunol. 4, 38–43 (2003).

    Article  CAS  Google Scholar 

  10. Hayashi, K. et al. The B cell-restricted adaptor BASH is required for normal development and antigen receptor-mediated activation of B cells. Proc. Natl. Acad. Sci. USA 97, 2755–2760 (2000).

    Article  CAS  Google Scholar 

  11. Shimizu, T., Mundt, C., Licence, S., Melchers, F. & Martensson, I.L. VpreB1/VpreB2/λ5 triple-deficient mice show impaired B cell development but functional allelic exclusion of the IgH locus. J. Immunol. 168, 6286–6293 (2002).

    Article  CAS  Google Scholar 

  12. Hess, J. et al. Induction of pre-B cell proliferation after de novo synthesis of the pre-B cell receptor. Proc. Natl. Acad. Sci. USA 98, 1745–1750 (2001).

    Article  CAS  Google Scholar 

  13. Kitamura, D., Roes, J., Kuhn, R. & Rajewsky, K. A B cell-deficient mouse by targeted disruption of the membrane exon of the immunoglobulin μ chain gene. Nature 350, 423–426 (1991).

    Article  CAS  Google Scholar 

  14. Kitamura, D. et al. A critical role of λ5 protein in B cell development. Cell 69, 823–831 (1992).

    Article  CAS  Google Scholar 

  15. Mundt, C., Licence, S., Shimizu, T., Melchers, F. & Martensson, I.L. Loss of precursor B cell expansion but not allelic exclusion in VpreB1/VpreB2 double-deficient mice. J. Exp. Med. 193, 435–445 (2001).

    Article  CAS  Google Scholar 

  16. Reichlin, A. et al. B cell development is arrested at the immature B cell stage in mice carrying a mutation in the cytoplasmic domain of immunoglobulin β. J. Exp. Med. 193, 13–23 (2001).

    Article  CAS  Google Scholar 

  17. Rolink, A.G., Winkler, T., Melchers, F. & Andersson, J. Precursor B cell receptor-dependent B cell proliferation and differentiation does not require the bone marrow or fetal liver environment. J. Exp. Med. 191, 23–32 (2000).

    Article  CAS  Google Scholar 

  18. Ceredig, R., Rolink, A.G., Melchers, F. & Andersson, J. The B cell receptor, but not the pre-B cell receptor, mediates arrest of B cell differentiation. Eur. J. Immunol. 30, 759–767 (2000).

    Article  CAS  Google Scholar 

  19. Shaffer, A.L. & Schlissel, M.S. A truncated heavy chain protein relieves the requirement for surrogate light chains in early B cell development. J. Immunol. 159, 1265–1275 (1997).

    CAS  PubMed  Google Scholar 

  20. Bradl, H. & Jack, H.M. Surrogate light chain-mediated interaction of a soluble pre-B cell receptor with adherent cell lines. J. Immunol. 167, 6403–6411 (2001).

    Article  CAS  Google Scholar 

  21. Karasuyama, H. et al. The expression of Vpre-B/λ5 surrogate light chain in early bone marrow precursor B cells of normal and B cell-deficient mutant mice. Cell 77, 133–143 (1994).

    Article  CAS  Google Scholar 

  22. Guo, B., Kato, R.M., Garcia-Lloret, M., Wahl, M.I. & Rawlings, D.J. Engagement of the human pre-B cell receptor generates a lipid raft-dependent calcium signaling complex. Immunity 13, 243–253 (2000).

    Article  CAS  Google Scholar 

  23. Winkler, T.H., Rolink, A., Melchers, F. & Karasuyama, H. Precursor B cells of mouse bone marrow express two different complexes with the surrogate light chain on the surface. Eur. J. Immunol. 25, 446–450 (1995).

    Article  CAS  Google Scholar 

  24. Muljo, S.A. & Schlissel, M.S. The variable, CH1, CH2 and CH3 domains of Ig heavy chain are dispensable for pre-BCR function in transgenic mice. Int. Immunol. 14, 577–584 (2002).

    Article  CAS  Google Scholar 

  25. Karasuyama, H., Rolink, A. & Melchers, F. A complex of glycoproteins is associated with VpreB/λ5 surrogate light chain on the surface of μ heavy chain-negative early precursor B cell lines. J. Exp. Med. 178, 469–478 (1993).

    Article  CAS  Google Scholar 

  26. Leptin, M. et al. Monoclonal antibodies specific for murine IgM I. Characterization of antigenic determinants on the four constant domains of the μ heavy chain. Eur. J. Immunol. 14, 534–542 (1984).

    Article  CAS  Google Scholar 

  27. Lassoued, K. et al. Expression of surrogate light chain receptors is restricted to a late stage in pre-B cell differentiation. Cell 73, 73–86 (1993).

    Article  CAS  Google Scholar 

  28. Fuhrmann, U., Bause, E., Legler, G. & Ploegh, H. Novel mannosidase inhibitor blocking conversion of high mannose to complex oligosaccharides. Nature 307, 755–758 (1984).

    Article  CAS  Google Scholar 

  29. ten Boekel, E., Melchers, F. & Rolink, A.G. Changes in the V(H) gene repertoire of developing precursor B lymphocytes in mouse bone marrow mediated by the pre-B cell receptor. Immunity 7, 357–368 (1997).

    Article  CAS  Google Scholar 

  30. Silverman, G.J. et al. A B cell superantigen-induced persistent “Hole” in the B-1 repertoire. J. Exp. Med. 192, 87–98 (2000).

    Article  CAS  Google Scholar 

  31. Winkler, T.H., Melchers, F. & Rolink, A.G. Interleukin-3 and interleukin-7 are alternative growth factors for the same B-cell precursors in the mouse. Blood 85, 2045–2051 (1995).

    CAS  PubMed  Google Scholar 

  32. Wasserman, R. et al. A novel mechanism for B cell repertoire maturation based on response by B cell precursors to pre-B receptor assembly. J. Exp. Med. 187, 259–264 (1998).

    Article  CAS  Google Scholar 

  33. Rolink, A., Grawunder, U., Haasner, D., Strasser, A. & Melchers, F. Immature surface Ig+ B cells can continue to rearrange κ and λL chain gene loci. J Exp Med 178, 1263–1270 (1993).

    Article  CAS  Google Scholar 

  34. Takemori, T., Miyazoe, I., Shirasawa, T., Taniguchi, M. & Graf, T. A temperature-sensitive mutant of Abelson murine leukemia virus confers inducibility of IgM expression to transformed lymphoid cells. EMBO J. 6, 951–956 (1987).

    Article  CAS  Google Scholar 

  35. Ho, S.N., Hunt, H.D., Horton, R.M., Pullen, J.K. & Pease, L.R. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77, 51–59 (1989).

    Article  CAS  Google Scholar 

  36. Chambers, J.D., Simon, S.I., Berger, E.M., Sklar, L.A. & Arfors, K.E. Endocytosis of β2 integrins by stimulated human neutrophils analyzed by flow cytometry. J. Leukoc. Biol. 53, 462–469 (1993).

    Article  CAS  Google Scholar 

  37. Ohnishi, K. & Takemori, T. Molecular components and assembly of μ.surrogate light chain complexes in pre-B cell lines. J. Biol. Chem. 269, 28347–28353 (1994).

    CAS  PubMed  Google Scholar 

  38. Hartley, D. & Corvera, S. Formation of c-Cbl.phosphatidylinositol 3-kinase complexes on lymphocyte membranes by a p56lck-independent mechanism. J. Biol. Chem. 271, 21939–21943 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Karasuyama for the SL156 and LM34 antibodies; and T. Takemori and K. Karjalainen for advice and discussions. This work was supported in part by grants to F.M. from the Swiss National Funds (No-3100-066682.01/1) and to K.O. from the Japan Society for the Promotion of Science (KAKENHI 14570290).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuo Ohnishi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohnishi, K., Melchers, F. The nonimmunoglobulin portion of λ5 mediates cell-autonomous pre-B cell receptor signaling. Nat Immunol 4, 849–856 (2003). https://doi.org/10.1038/ni959

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni959

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing