Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Requirement for Notch1 signals at sequential early stages of intrathymic T cell development

An Erratum to this article was published on 01 September 2005

Abstract

Signaling through the transmembrane Notch1 receptor directs thymus-seeding progenitors (TSPs) to suppress their B cell potential and 'choose' the T cell fate. Present paradigms suggest that TSPs are contained in the multipotent early T lineage precursor (ETP) subset of thymocytes. However, we show here that the B cell potential of ETPs was not augmented in microenvironments that limited Notch1 activation. Furthermore, low-threshold Notch1 signals suppressed B cell production by TSPs before they reached the ETP stage. Notch1 signals of a higher threshold were needed to drive proliferation of ETPs and development into CD4+CD8+ double-positive thymocytes. Thus, TSPs can be differentiated from all previously identified early T cell progenitors by their robust B cell potential and exquisite sensitivity to Notch1 signals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Failure of ETPs to produce B cells in L-Fng-transgenic thymic lobes.
Figure 2: Minimal B cell potential of ETPs in the bone marrow.
Figure 3: High expression of Hes1 by all DN thymocyte subsets.
Figure 4: Paucity of ETPs and DN2 thymocytes in L-Fng-transgenic mice.
Figure 5: DN1 thymocyte subsets in L-Fng-transgenic mice.
Figure 6: Cells with an early B cell progenitor phenotype in L-Fng-transgenic thymi.
Figure 7: Notch1+/− progenitors are highly sensitive transgenic L-Fng.
Figure 8: Production of ETPs and thymic B cells from HSCs is differentially sensitive to decreased Notch1 'dosage'.

Similar content being viewed by others

References

  1. Maillard, I., Adler, S.H. & Pear, W.S. Notch and the immune system. Immunity 19, 781–791 (2003).

    Article  CAS  Google Scholar 

  2. Radtke, F., Wilson, A., Mancini, S.J. & MacDonald, H.R. Notch regulation of lymphocyte development and function. Nat. Immunol. 5, 247–253 (2004).

    Article  CAS  Google Scholar 

  3. Radtke, F. et al. Notch1 deficiency dissociates the intrathymic development of dendritic cells and T cells. J. Exp. Med. 191, 1085–1094 (2000).

    Article  CAS  Google Scholar 

  4. Wilson, A., MacDonald, H.R. & Radtke, F. Notch 1-deficient common lymphoid precursors adopt a B cell fate in the thymus. J. Exp. Med. 194, 1003–1012 (2001).

    Article  CAS  Google Scholar 

  5. Han, H. et al. Inducible gene knockout of transcription factor recombination signal binding protein-J reveals its essential role in T versus B lineage decision. Int. Immunol. 14, 637–645 (2002).

    Article  CAS  Google Scholar 

  6. Izon, D.J. et al. Deltex1 redirects lymphoid progenitors to the B cell lineage by antagonizing Notch1. Immunity 16, 231–243 (2002).

    Article  CAS  Google Scholar 

  7. Maillard, I. et al. Mastermind critically regulates Notch-mediated lymphoid cell fate decisions. Blood 104, 1696–1702 (2004).

    Article  CAS  Google Scholar 

  8. Koch, U. et al. Subversion of the T/B lineage decision in the thymus by Lunatic Fringe-mediated inhibition of Notch1. Immunity 15, 225–236 (2001).

    Article  CAS  Google Scholar 

  9. Haines, N. & Irvine, K.D. Glycosylation regulates Notch signalling. Nat. Rev. Mol. Cell Biol. 4, 786–797 (2003).

    Article  CAS  Google Scholar 

  10. Koch, U., Yuan, J.S., Harper, J.A. & Guidos, C.J. Fine-tuning Notch1 activation by endocytosis and glycosylation. Semin. Immunol. 15, 99–106 (2003).

    Article  CAS  Google Scholar 

  11. Pui, J.C. et al. Notch1 expression in early lymphopoiesis influences B versus T lineage determination. Immunity 11, 299–308 (1999).

    Article  CAS  Google Scholar 

  12. Jaleco, A.C. et al. Differential effects of Notch ligands Delta-1 and Jagged-1 in human lymphoid differentiation. J. Exp. Med. 194, 991–1002 (2001).

    Article  CAS  Google Scholar 

  13. Schmitt, T.M. & Zuniga-Pflucker, J.C. Induction of T cell development from hematopoietic progenitor cells by Delta-like-1 in vitro. Immunity 17, 749–756 (2002).

    Article  CAS  Google Scholar 

  14. Hozumi, K. et al. Delta-like 1 is necessary for the generation of marginal zone B cells but not T cells in vivo. Nat. Immunol. 5, 638–644 (2004).

    Article  CAS  Google Scholar 

  15. Foss, D.L., Donskoy, E. & Goldschneider, I. The importation of hematogenous precursors by the thymus is a gated phenomenon in normal adult mice. J. Exp. Med. 193, 365–374 (2001).

    Article  CAS  Google Scholar 

  16. Donskoy, E., Foss, D. & Goldschneider, I. Gated importation of prothymocytes by adult mouse thymus is coordinated with their periodic mobilization from bone marrow. J. Immunol. 171, 3568–3575 (2003).

    Article  CAS  Google Scholar 

  17. Ceredig, R. & Rolink, T. A positive look at double-negative thymocytes. Nat. Rev. Immunol. 2, 888–897 (2002).

    Article  CAS  Google Scholar 

  18. Bhandoola, A., Sambandam, A., Allman, D., Meraz, A. & Schwarz, B. Early T lineage progenitors: new insights, but old questions remain. J. Immunol. 171, 5653–5658 (2003).

    Article  CAS  Google Scholar 

  19. Wu, L., Antica, M., Johnson, G.R., Scollay, R. & Shortman, K. Developmental potential of the earliest precursor cells from the adult mouse thymus. J. Exp. Med. 174, 1617–1627 (1991).

    Article  CAS  Google Scholar 

  20. Matsuzaki, Y. et al. Characterization of c-kit positive intrathymic stem cells that are restricted to lymphoid differentiation. J. Exp. Med. 178, 1283–1292 (1993).

    Article  CAS  Google Scholar 

  21. Ardavin, C., Wu, L., Li, C.L. & Shortman, K. Thymic dendritic cells and T cells develop simultaneously in the thymus from a common precursor population. Nature 362, 761–763 (1993).

    Article  CAS  Google Scholar 

  22. Moore, T.A. & Zlotnik, A. T-cell lineage commitment and cytokine responses of thymic progenitors. Blood 86, 1850–1860 (1995).

    CAS  PubMed  Google Scholar 

  23. Allman, D. et al. Thymopoiesis independent of common lymphoid progenitors. Nat. Immunol. 4, 168–174 (2003).

    Article  CAS  Google Scholar 

  24. Kondo, M., Weissman, I.L. & Akashi, K. Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 91, 661–672 (1997).

    Article  CAS  Google Scholar 

  25. Izon, D. et al. A common pathway for dendritic cell and early B cell development. J. Immunol. 167, 1387–1392 (2001).

    Article  CAS  Google Scholar 

  26. Adolfsson, J. et al. Upregulation of Flt3 expression within the bone marrow LinSca1+c-kit+ stem cell compartment is accompanied by loss of self-renewal capacity. Immunity 15, 659–669 (2001).

    Article  CAS  Google Scholar 

  27. Sitnicka, E. et al. Key role of flt3 ligand in regulation of the common lymphoid progenitor but not in maintenance of the hematopoietic stem cell pool. Immunity 17, 463–472 (2002).

    Article  CAS  Google Scholar 

  28. Schwarz, B.A. & Bhandoola, A. Circulating hematopoietic progenitors with T lineage potential. Nat. Immunol. 5, 953–960 (2004).

    Article  CAS  Google Scholar 

  29. Martin, C.H. et al. Efficient thymic immigration of B220+ lymphoid-restricted bone marrow cells with T precursor potential. Nat. Immunol. 4, 866–873 (2003).

    Article  CAS  Google Scholar 

  30. Porritt, H.E. et al. Heterogeneity among DN1 prothymocytes reveals multiple progenitors with different capacities to generate T cell and non-T cell lineages. Immunity 20, 735–745 (2004).

    Article  CAS  Google Scholar 

  31. Tanigaki, K. et al. Regulation of αβ/γδ T cell lineage commitment and peripheral T cell responses by Notch/RBP-J signaling. Immunity 20, 611–622 (2004).

    Article  CAS  Google Scholar 

  32. Wolfer, A., Wilson, A., Nemir, M., MacDonald, H.R. & Radtke, F. Inactivation of Notch1 impairs VDJβ rearrangement and allows pre-TCR-independent survival of early αβ lineage thymocytes. Immunity 16, 869–879 (2002).

    Article  CAS  Google Scholar 

  33. Ciofani, M. et al. Obligatory role for cooperative signaling by pre-TCR and Notch during thymocyte differentiation. J. Immunol. 172, 5230–5239 (2004).

    Article  CAS  Google Scholar 

  34. Schmitt, T.M., Ciofani, M., Petrie, H.T. & Zuniga-Pflucker, J.C. Maintenance of T cell specification and differentiation requires recurrent notch receptor-ligand interactions. J. Exp. Med. 200, 469–479 (2004).

    Article  CAS  Google Scholar 

  35. Huang, E.Y., Gallegos, A.M., Richards, S.M., Lehar, S.M. & Bevan, M.J. Surface expression of Notch1 on thymocytes: correlation with the double-negative to double-positive transition. J. Immunol. 171, 2296–2304 (2003).

    Article  CAS  Google Scholar 

  36. Heitzler, P. & Simpson, P. The choice of cell fate in the epidermis of Drosophila. Cell 64, 1083–1092 (1991).

    Article  CAS  Google Scholar 

  37. Greenwald, I. LIN-12/Notch signaling: lessons from worms and flies. Genes Dev. 12, 1751–1762 (1998).

    Article  CAS  Google Scholar 

  38. Balciunaite, G., Ceredig, R. & Rolink, A.G. The earliest subpopulation of mouse thymocytes contains potent T, significant macrophage and natural killer, but no B lymphocyte potential. Blood (2004).

  39. Nakano, T., Kodama, H. & Honjo, T. Generation of lymphohematopoietic cells from embryonic stem cells in culture. Science 265, 1098–1101 (1994).

    Article  CAS  Google Scholar 

  40. Mazurier, F., Doedens, M., Gan, O.I. & Dick, J.E. Rapid myeloerythroid repopulation after intrafemoral transplantation of NOD-SCID mice reveals a new class of human stem cells. Nat. Med. 9, 959–963 (2003).

    Article  CAS  Google Scholar 

  41. Hope, K.J., Jin, L. & Dick, J.E. Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat. Immunol. 5, 738–743 (2004).

    Article  CAS  Google Scholar 

  42. Hardy, R.R. et al. B-cell commitment, development and selection. Immunol. Rev. 175, 23–32 (2000).

    Article  CAS  Google Scholar 

  43. Washburn, T. et al. Notch activity influences the αβ versus γδ T cell lineage decision. Cell 88, 833–843 (1997).

    Article  CAS  Google Scholar 

  44. Radtke, F. et al. Deficient T cell fate specification in mice with an induced inactivation of Notch1. Immunity 10, 547–558 (1999).

    Article  CAS  Google Scholar 

  45. Mori, S., Shortman, K. & Wu, L. Characterization of thymus-seeding precursor cells from mouse bone marrow. Blood 98, 696–704 (2001).

    Article  CAS  Google Scholar 

  46. Ikawa, T. et al. Identification of the earliest prethymic T-cell progenitors in murine fetal blood. Blood 103, 530–537 (2004).

    Article  CAS  Google Scholar 

  47. Masuda, K. et al. Thymic anlage is colonized by progenitors restricted to T, NK, and dendritic cell lineages. J. Immunol. 174, 2525–2532 (2005).

    Article  CAS  Google Scholar 

  48. Harman, B.C. et al. T/B lineage choice occurs prior to intrathymic notch signalling. Blood (2005).

  49. Kincade, P.W. et al. Nature or nurture? Steady-state lymphocyte formation in adults does not recapitulate ontogeny. Immunol. Rev. 187, 116–125 (2002).

    Article  Google Scholar 

  50. Tomita, K. et al. The bHLH gene Hes1 is essential for expansion of early T cell precursors. Genes Dev. 13, 1203–1210 (1999).

    Article  CAS  Google Scholar 

  51. Kawamata, S., Du, C., Li, K. & Lavau, C. Overexpression of the Notch target genes Hes in vivo induces lymphoid and myeloid alterations. Oncogene 21, 3855–3863 (2002).

    Article  CAS  Google Scholar 

  52. Taghon, T.N., David, E.S., Zuniga-Pflucker, J.C. & Rothenberg, E.V. Delayed, asynchronous, and reversible T-lineage specification induced by Notch/Delta signaling. Genes Dev. 19, 965–978 (2005).

    Article  CAS  Google Scholar 

  53. Yun, T.J. & Bevan, M.J. Notch-regulated ankyrin-repeat protein inhibits Notch1 signaling: multiple Notch1 signaling pathways involved in T cell development. J. Immunol. 170, 5834–5841 (2003).

    Article  CAS  Google Scholar 

  54. Cheng, Y.C. et al. Notch activation regulates the segregation and differentiation of rhombomere boundary cells in the zebrafish hindbrain. Dev. Cell 6, 539–550 (2004).

    Article  CAS  Google Scholar 

  55. Wu, L., Li, C.L. & Shortman, K. Thymic dendritic cell precursors: relationship to the T lymphocyte lineage and phenotype of the dendritic cell progeny. J. Exp. Med. 184, 903–911 (1996).

    Article  CAS  Google Scholar 

  56. Lee, C.K. et al. Generation of macrophages from early T progenitors in vitro. J. Immunol. 166, 5964–5969 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Paige (Ontario Cancer Institute, Toronto, Canada) for OP9 cells; J. Dick and M. Doedens (University Health Network, Toronto, Canada) as well as L. Nutter for help with intrafemoral injections; S. Zhao for cell sorting; H. Petrie (University of Miami, Miami, Florida), W. Pear and A. Bhandoola (University of Pennsylvania, Philadelphia, Pennsylvania) for sharing data before publication; H. Petrie for Ter119; and J. Danska and M. Anderson (Sunnybrook & Women's College Hospital, Toronto, Canada) for comments on the manuscript. Supported by the Canadian Institutes of Health Research (C.J.G.) and Hospital for Sick Children (Restracom Studentship to J.Y.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cynthia J Guidos.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Inefficient Production of DP Thymocytes from Notch1+/− HSCs in Mixed BM Chimeras. (PDF 82 kb)

Supplementary Fig. 2

Normal Steady State Production of Thymic T and B Cells in Notch1+/− Mice. (PDF 95 kb)

Supplementary Fig. 3

Analysis of Donor Contribution to HSCs and DN Thymocyte Subsets in Mixed Chimeras. (PDF 101 kb)

Supplementary Fig. 4

Effect of Transgenic L-Fng on Committed B Cell Progenitors. (PDF 70 kb)

Supplementary Table 1

ETPs Efficiently Reconstitute All Thymic Subsets in WT and Tg+ Hosts. (PDF 52 kb)

Supplementary Methods (PDF 62 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, J., Visan, I., Yuan, J. et al. Requirement for Notch1 signals at sequential early stages of intrathymic T cell development. Nat Immunol 6, 671–679 (2005). https://doi.org/10.1038/ni1217

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1217

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing