Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cross-regulation of signaling by ITAM-associated receptors

Abstract

An important function of receptors that signal through immunoreceptor tyrosine-based activation motifs (ITAMs) is to regulate signaling by heterologous receptors. This review describes mechanisms by which ITAM-associated receptors modulate signaling by Toll-like receptors (TLRs), tumor necrosis factor receptor family members and cytokine receptors that use the Jak–STAT signaling pathway, and the biological importance of this signal transduction cross-talk. ITAM-mediated cross-regulation can either augment or dampen signaling by other receptors. Conversely, TLRs and cytokines modulate ITAM-mediated signaling, by means including activation of β2 integrins that are coupled to the ITAM-containing adaptors DAP12 and FcRγ. Integration of ITAM signaling into signaling networks through cross-talk with other signal transduction pathways results in tight regulation and fine tuning of cellular responses to various extracellular stimuli and contributes to induction of specific activation and differentiation pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Integration of RANK and ITAM signaling to activate NFATc1.
Figure 2: Integrated signaling by ITAM-associated receptors and TLRs leads to enhanced activation of NF-κB and MAPKs.
Figure 3: Integration of ITAM and cytokine Jak–STAT signaling.
Figure 4: Indirect activation of calcium signaling by TLRs and TNFR through integrins.

Similar content being viewed by others

References

  1. Abram, C.L. & Lowell, C.A. The expanding role for ITAM-based signaling pathways in immune cells. Sci. STKE 2007, re2 (2007).

    PubMed  Google Scholar 

  2. Fathman, C.G. & Lineberry, N.B. Molecular mechanisms of CD4+ T-cell anergy. Nat. Rev. Immunol. 7, 599–609 (2007).

    CAS  PubMed  Google Scholar 

  3. Hamerman, J.A. & Lanier, L.L. Inhibition of immune responses by ITAM-bearing receptors. Sci. STKE 2006, re1 (2006).

    PubMed  Google Scholar 

  4. Zou, W., Reeve, J.L., Liu, Y., Teitelbaum, S.L. & Ross, F.P. DAP12 couples c-Fms activation to the osteoclast cytoskeleton by recruitment of Syk. Mol. Cell 31, 422–431 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Ivashkiv, L.B. A signal-switch hypothesis for cross-regulation of cytokine and TLR signalling pathways. Nat. Rev. Immunol. 8, 816–822 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Abtahian, F. et al. Evidence for the requirement of ITAM domains but not SLP-76/Gads interaction for integrin signaling in hematopoietic cells. Mol. Cell. Biol. 26, 6936–6949 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Mocsai, A. et al. Integrin signaling in neutrophils and macrophages uses adaptors containing immunoreceptor tyrosine-based activation motifs. Nat. Immunol. 7, 1326–1333 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Zou, W. et al. Syk, c-Src, the αvβ3 integrin, and ITAM immunoreceptors, in concert, regulate osteoclastic bone resorption. J. Cell Biol. 176, 877–888 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Ravetch, J.V. & Lanier, L.L. Immune inhibitory receptors. Science 290, 84–89 (2000).

    CAS  PubMed  Google Scholar 

  10. Turnbull, I.R. & Colonna, M. Activating and inhibitory functions of DAP12. Nat. Rev. Immunol. 7, 155–161 (2007).

    CAS  PubMed  Google Scholar 

  11. Underhill, D.M. & Goodridge, H.S. The many faces of ITAMs. Trends Immunol. 28, 66–73 (2007).

    CAS  PubMed  Google Scholar 

  12. Hamerman, J.A. et al. Cutting edge: inhibition of TLR and FcR responses in macrophages by triggering receptor expressed on myeloid cells (TREM)-2 and DAP12. J. Immunol. 177, 2051–2055 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Hamerman, J.A., Tchao, N.K., Lowell, C.A. & Lanier, L.L. Enhanced Toll-like receptor responses in the absence of signaling adaptor DAP12. Nat. Immunol. 6, 579–586 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Turnbull, I.R. et al. Cutting edge: TREM-2 attenuates macrophage activation. J. Immunol. 177, 3520–3524 (2006).

    CAS  PubMed  Google Scholar 

  15. Turnbull, I.R. et al. DAP12 (KARAP) amplifies inflammation and increases mortality from endotoxemia and septic peritonitis. J. Exp. Med. 202, 363–369 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kanamaru, Y. et al. Inhibitory ITAM signaling by FcαRI-FcRγ chain controls multiple activating responses and prevents renal inflammation. J. Immunol. 180, 2669–2678 (2008).

    CAS  PubMed  Google Scholar 

  17. Pasquier, B. et al. Identification of FcαRI as an inhibitory receptor that controls inflammation: dual role of FcRγ ITAM. Immunity 22, 31–42 (2005).

    CAS  PubMed  Google Scholar 

  18. Pinheiro da Silva, F. et al. CD16 promotes Escherichia coli sepsis through an FcRγ inhibitory pathway that prevents phagocytosis and facilitates inflammation. Nat. Med. 13, 1368–1374 (2007).

    CAS  PubMed  Google Scholar 

  19. Klesney-Tait, J., Turnbull, I.R. & Colonna, M. The TREM receptor family and signal integration. Nat. Immunol. 7, 1266–1273 (2006).

    CAS  PubMed  Google Scholar 

  20. Lorenzo, J., Horowitz, M. & Choi, Y. Osteoimmunology: interactions of the bone and immune system. Endocr. Rev. 29, 403–440 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Takayanagi, H. Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat. Rev. Immunol. 7, 292–304 (2007).

    CAS  PubMed  Google Scholar 

  22. Teitelbaum, S.L. Osteoclasts; culprits in inflammatory osteolysis. Arthritis Res. Ther. 8, 201 (2006).

    PubMed  Google Scholar 

  23. Takayanagi, H. et al. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev. Cell 3, 889–901 (2002).

    CAS  PubMed  Google Scholar 

  24. Aliprantis, A.O. et al. NFATc1 in mice represses osteoprotegerin during osteoclastogenesis and dissociates systemic osteopenia from inflammation in cherubism. J. Clin. Invest. 118, 3775–3789 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Humphrey, M.B. et al. TREM2, a DAP12-associated receptor, regulates osteoclast differentiation and function. J. Bone Miner. Res. 21, 237–245 (2006).

    CAS  PubMed  Google Scholar 

  26. Koga, T. et al. Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis. Nature 428, 758–763 (2004).

    CAS  PubMed  Google Scholar 

  27. Mao, D., Epple, H., Uthgenannt, B., Novack, D.V. & Faccio, R. PLCγ2 regulates osteoclastogenesis via its interaction with ITAM proteins and GAB2. J. Clin. Invest. 116, 2869–2879 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Mocsai, A. et al. The immunomodulatory adapter proteins DAP12 and Fc receptor gamma-chain (FcRγ) regulate development of functional osteoclasts through the Syk tyrosine kinase. Proc. Natl. Acad. Sci. USA 101, 6158–6163 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Kaifu, T. et al. Osteopetrosis and thalamic hypomyelinosis with synaptic degeneration in DAP12-deficient mice. J. Clin. Invest. 111, 323–332 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Nataf, S. et al. Brain and bone damage in KARAP/DAP12 loss-of-function mice correlate with alterations in microglia and osteoclast lineages. Am. J. Pathol. 166, 275–286 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Cella, M. et al. Impaired differentiation of osteoclasts in TREM-2-deficient individuals. J. Exp. Med. 198, 645–651 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Paloneva, J. et al. Loss-of-function mutations in TYROBP (DAP12) result in a presenile dementia with bone cysts. Nat. Genet. 25, 357–361 (2000).

    CAS  PubMed  Google Scholar 

  33. Paloneva, J. et al. Mutations in two genes encoding different subunits of a receptor signaling complex result in an identical disease phenotype. Am. J. Hum. Genet. 71, 656–662 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Asagiri, M. et al. Autoamplification of NFATc1 expression determines its essential role in bone homeostasis. J. Exp. Med. 202, 1261–1269 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Lee, S.H., Kim, T., Jeong, D., Kim, N. & Choi, Y. The tec family tyrosine kinase Btk regulates RANKL-induced osteoclast maturation. J. Biol. Chem. 283, 11526–11534 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Shinohara, M. et al. Tyrosine kinases Btk and Tec regulate osteoclast differentiation by linking RANK and ITAM signals. Cell 132, 794–806 (2008).

    CAS  PubMed  Google Scholar 

  37. Bezman, N. & Koretzky, G.A. Compartmentalization of ITAM and integrin signaling by adapter molecules. Immunol. Rev. 218, 9–28 (2007).

    CAS  PubMed  Google Scholar 

  38. Epple, H. et al. Phospholipase Cγ2 modulates integrin signaling in the osteoclast by affecting the localization and activation of Src kinase. Mol. Cell. Biol. 28, 3610–3622 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Kang, Y.J. et al. Calcineurin negatively regulates TLR-mediated activation pathways. J. Immunol. 179, 4598–4607 (2007).

    CAS  PubMed  Google Scholar 

  40. Tassiulas, I. et al. Amplification of IFN-α-induced STAT1 activation and inflammatory function by Syk and ITAM-containing adaptors. Nat. Immunol. 5, 1181–1189 (2004).

    CAS  PubMed  Google Scholar 

  41. Wang, L. et al. 'Tuning' of type I interferon-induced Jak-STAT1 signaling by calcium-dependent kinases in macrophages. Nat. Immunol. 9, 186–193 (2008).

    CAS  PubMed  Google Scholar 

  42. Takegahara, N. et al. Plexin-A1 and its interaction with DAP12 in immune responses and bone homeostasis. Nat. Cell Biol. 8, 615–622 (2006).

    CAS  PubMed  Google Scholar 

  43. Radhakrishnan, S. et al. TREM-2 mediated signaling induces antigen uptake and retention in mature myeloid dendritic cells. J. Immunol. 181, 7863–7872 (2008).

    CAS  PubMed  Google Scholar 

  44. Stadanlick, J.E. et al. Tonic B cell antigen receptor signals supply an NF-κB substrate for prosurvival BLyS signaling. Nat. Immunol. 9, 1379–1387 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Yamashita, T. et al. NF-κB p50 and p52 regulate receptor activator of NF-κB ligand (RANKL) and tumor necrosis factor-induced osteoclast precursor differentiation by activating c-Fos and NFATc1. J. Biol. Chem. 282, 18245–18253 (2007).

    CAS  PubMed  Google Scholar 

  46. Vaira, S. et al. RelB is the NF-κB subunit downstream of NIK responsible for osteoclast differentiation. Proc. Natl. Acad. Sci. USA 105, 3897–3902 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Brown, G.D. et al. Dectin-1 mediates the biological effects of β-glucans. J. Exp. Med. 197, 1119–1124 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Gantner, B.N., Simmons, R.M., Canavera, S.J., Akira, S. & Underhill, D.M. Collaborative induction of inflammatory responses by dectin-1 and Toll-like receptor 2. J. Exp. Med. 197, 1107–1117 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Rogers, N.C. et al. Syk-dependent cytokine induction by Dectin-1 reveals a novel pattern recognition pathway for C type lectins. Immunity 22, 507–517 (2005).

    CAS  PubMed  Google Scholar 

  50. Boule, M.W. et al. Toll-like receptor 9-dependent and -independent dendritic cell activation by chromatin-immunoglobulin G complexes. J. Exp. Med. 199, 1631–1640 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. LeibundGut-Landmann, S. et al. Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat. Immunol. 8, 630–638 (2007).

    CAS  PubMed  Google Scholar 

  52. Cuzzola, M. et al. β2 integrins are involved in cytokine responses to whole Gram-positive bacteria. J. Immunol. 164, 5871–5876 (2000).

    CAS  PubMed  Google Scholar 

  53. Gerold, G. et al. A Toll-like receptor 2-integrin β3 complex senses bacterial lipopeptides via vitronectin. Nat. Immunol. 9, 761–768 (2008).

    CAS  PubMed  Google Scholar 

  54. Kagan, J.C. & Medzhitov, R. Phosphoinositide-mediated adaptor recruitment controls Toll-like receptor signaling. Cell 125, 943–955 (2006).

    CAS  PubMed  Google Scholar 

  55. Akira, S. & Takeda, K. Toll-like receptor signalling. Nat. Rev. Immunol. 4, 499–511 (2004).

    CAS  PubMed  Google Scholar 

  56. Gross, O. et al. Card9 controls a non-TLR signalling pathway for innate anti-fungal immunity. Nature 442, 651–656 (2006).

    CAS  PubMed  Google Scholar 

  57. Gross, O. et al. Multiple ITAM-coupled NK-cell receptors engage the Bcl10/Malt1 complex via Carma1 for NF-κB and MAPK activation to selectively control cytokine production. Blood 112, 2421–2428 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Hara, H. et al. The adaptor protein CARD9 is essential for the activation of myeloid cells through ITAM-associated and Toll-like receptors. Nat. Immunol. 8, 619–629 (2007).

    CAS  PubMed  Google Scholar 

  59. Hara, H. et al. Cell type-specific regulation of ITAM-mediated NF-κB activation by the adaptors, CARMA1 and CARD9. J. Immunol. 181, 918–930 (2008).

    CAS  PubMed  Google Scholar 

  60. Hsu, Y.M. et al. The adaptor protein CARD9 is required for innate immune responses to intracellular pathogens. Nat. Immunol. 8, 198–205 (2007).

    CAS  PubMed  Google Scholar 

  61. Gringhuis, S.I. et al. Dectin-1 directs T helper cell differentiation by controlling noncanonical NF-κB activation through Raf-1 and Syk. Nat. Immunol. 10, 203–213 (2009).

    CAS  PubMed  Google Scholar 

  62. Nguyen, K., Sylvain, N.R. & Bunnell, S.C. T cell costimulation via the integrin VLA-4 inhibits the actin-dependent centralization of signaling microclusters containing the adaptor SLP-76. Immunity 28, 810–821 (2008).

    CAS  PubMed  Google Scholar 

  63. Chaturvedi, A., Dorward, D. & Pierce, S.K. The B cell receptor governs the subcellular location of Toll-like receptor 9 leading to hyperresponses to DNA-containing antigens. Immunity 28, 799–809 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Ng, G. et al. Receptor-independent, direct membrane binding leads to cell-surface lipid sorting and Syk kinase activation in dendritic cells. Immunity 29, 807–818 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Chu, C.L. et al. Increased TLR responses in dendritic cells lacking the ITAM-containing adapters DAP12 and FcRγ. Eur. J. Immunol. 38, 166–173 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Cao, W. et al. Plasmacytoid dendritic cell–specific receptor ILT7-FcɛRI γ inhibits Toll-like receptor–induced interferon production. J. Exp. Med. 203, 1399–1405 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Liew, F.Y., Xu, D., Brint, E.K. & O'Neill, L.A. Negative regulation of toll-like receptor-mediated immune responses. Nat. Rev. Immunol. 5, 446–458 (2005).

    CAS  PubMed  Google Scholar 

  68. Hu, X., Chakravarty, S.D. & Ivashkiv, L.B. Regulation of IFN and TLR signaling during macrophage activation by opposing feedforward and feedback inhibition mechanisms. Immunol. Rev. 226, 41–56 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Ji, J.D. et al. Inhibition of interleukin 10 signaling after Fc receptor ligation and during rheumatoid arthritis. J. Exp. Med. 197, 1573–1583 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Yoshimura, A., Naka, T. & Kubo, M. SOCS proteins, cytokine signalling and immune regulation. Nat. Rev. Immunol. 7, 454–465 (2007).

    CAS  PubMed  Google Scholar 

  71. Bode, J.G. et al. The MKK6/p38 mitogen-activated protein kinase pathway is capable of inducing SOCS3 gene expression and inhibits IL-6-induced transcription. Biol. Chem. 382, 1447–1453 (2001).

    CAS  PubMed  Google Scholar 

  72. Gerber, J.S. & Mosser, D.M. Reversing lipopolysaccharide toxicity by ligating the macrophage Fcγ receptors. J. Immunol. 166, 6861–6868 (2001).

    CAS  PubMed  Google Scholar 

  73. Polumuri, S.K., Toshchakov, V.Y. & Vogel, S.N. Role of phosphatidylinositol-3 kinase in transcriptional regulation of TLR-induced IL-12 and IL-10 by Fcγ receptor ligation in murine macrophages. J. Immunol. 179, 236–246 (2007).

    CAS  PubMed  Google Scholar 

  74. Lucas, M., Zhang, X., Prasanna, V. & Mosser, D.M. ERK activation following macrophage FcγR ligation leads to chromatin modifications at the IL-10 locus. J. Immunol. 175, 469–477 (2005).

    CAS  PubMed  Google Scholar 

  75. Zhang, X., Edwards, J.P. & Mosser, D.M. Dynamic and transient remodeling of the macrophage IL-10 promoter during transcription. J. Immunol. 177, 1282–1288 (2006).

    CAS  PubMed  Google Scholar 

  76. Dillon, S. et al. Yeast zymosan, a stimulus for TLR2 and dectin-1, induces regulatory antigen-presenting cells and immunological tolerance. J. Clin. Invest. 116, 916–928 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Dhodapkar, K.M. et al. Selective blockade of the inhibitory Fcγ receptor (FcγRIIB) in human dendritic cells and monocytes induces a type I interferon response program. J. Exp. Med. 204, 1359–1369 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Helming, L. et al. Essential role of DAP12 signaling in macrophage programming into a fusion-competent state. Sci. Signal. 1, ra11 (2008).

    PubMed  PubMed Central  Google Scholar 

  79. Hida, S. et al. Fc receptor γ-chain, a constitutive component of the IL-3 receptor, is required for IL-3-induced IL-4 production in basophils. Nat. Immunol. 10, 214–222 (2009).

    CAS  PubMed  Google Scholar 

  80. Lee, I.H., Li, W.P., Hisert, K.B. & Ivashkiv, L.B. Inhibition of interleukin 2 signaling and signal transducer and activator of transcription (STAT)5 activation during T cell receptor-mediated feedback inhibition of T cell expansion. J. Exp. Med. 190, 1263–1274 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhu, J. et al. Transient inhibition of interleukin 4 signaling by T cell receptor ligation. J. Exp. Med. 192, 1125–1134 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Park, J.H. et al. 'Coreceptor tuning': cytokine signals transcriptionally tailor CD8 coreceptor expression to the self-specificity of the TCR. Nat. Immunol. 8, 1049–1059 (2007).

    CAS  PubMed  Google Scholar 

  83. Du, Z. et al. Selective regulation of IL-10 signaling and function by zymosan. J. Immunol. 176, 4785–4792 (2006).

    CAS  PubMed  Google Scholar 

  84. Du, Z. et al. Inhibition of IFN-α signaling by a PKC- and protein tyrosine phosphatase SHP-2-dependent pathway. Proc. Natl. Acad. Sci. USA 102, 10267–10272 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Park-Min, K.H. et al. FcγRIII-dependent inhibition of interferon-γ responses mediates suppressive effects of intravenous immune globulin. Immunity 26, 67–78 (2007).

    CAS  PubMed  Google Scholar 

  86. Ochi, S. et al. Pathological role of osteoclast costimulation in arthritis-induced bone loss. Proc. Natl. Acad. Sci. USA 104, 11394–11399 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Pearse, R.N., Feinman, R. & Ravetch, J.V. Characterization of the promoter of the human gene encoding the high-affinity IgG receptor: transcriptional induction by γ-interferon is mediated through common DNA response elements. Proc. Natl. Acad. Sci. USA 88, 11305–11309 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Bekeredjian-Ding, I. et al. TLR9-activating DNA up-regulates ZAP70 via sustained PKB induction in IgM+ B cells. J. Immunol. 181, 8267–8277 (2008).

    CAS  PubMed  Google Scholar 

  89. Liu, Y. et al. Cytokine-mediated regulation of activating and inhibitory Fcγ receptors in human monocytes. J. Leukoc. Biol. 77, 767–776 (2005).

    CAS  PubMed  Google Scholar 

  90. Belostocki, K. et al. Infliximab treatment shifts the balance between stimulatory and inhibitory Fcγ receptor type II isoforms on neutrophils in patients with rheumatoid arthritis. Arthritis Rheum. 58, 384–388 (2008).

    PubMed  Google Scholar 

  91. Miyazaki, T. et al. Pyk2 is a downstream mediator of the IL-2 receptor-coupled Jak signaling pathway. Genes Dev. 12, 770–775 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Takaoka, A. et al. Protein tyrosine kinase Pyk2 mediates the Jak-dependent activation of MAPK and Stat1 in IFN-γ but not IFN-α, signaling. EMBO J. 18, 2480–2488 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Horng, T., Bezbradica, J.S. & Medzhitov, R. NKG2D signaling is coupled to the interleukin 15 receptor signaling pathway. Nat. Immunol. 8, 1345–1352 (2007).

    CAS  PubMed  Google Scholar 

  94. Chen, C. et al. The integrin α9β1 contributes to granulopoiesis by enhancing granulocyte colony-stimulating factor receptor signaling. Immunity 25, 895–906 (2006).

    CAS  PubMed  Google Scholar 

  95. Rothlin, C.V., Ghosh, S., Zuniga, E.I., Oldstone, M.B. & Lemke, G. TAM receptors are pleiotropic inhibitors of the innate immune response. Cell 131, 1124–1136 (2007).

    CAS  PubMed  Google Scholar 

  96. Luo, B.H., Carman, C.V. & Springer, T.A. Structural basis of integrin regulation and signaling. Annu. Rev. Immunol. 25, 619–647 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Avdi, N.J. et al. Tumor necrosis factor-α activation of the c-Jun N-terminal kinase pathway in human neutrophils. Integrin involvement in a pathway leading from cytoplasmic tyrosine kinases apoptosis. J. Biol. Chem. 276, 2189–2199 (2001).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank M. Nakamura for discussions and X. Hu and K.-H. Park-Min for critical review of the manuscript. Supported by the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lionel B Ivashkiv.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivashkiv, L. Cross-regulation of signaling by ITAM-associated receptors. Nat Immunol 10, 340–347 (2009). https://doi.org/10.1038/ni.1706

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1706

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing