Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

DNA-PKcs: a T-cell tumour suppressor encoded at the mouse scid locus

Abstract

Severe combined immunodeficiency (SCID) mice1 are defective in their ability to rearrange their variable (V), diversity (D) and joining (J) genetic elements to generate functional immunoglobulin (Ig) and T-cell receptor (TCR) molecules; as a result, they lack mature B and T cells2. These mice are highly sensitive to ionizing radiation, suggesting that the product of the scid gene plays a critical role in both V(D)J recombination and DMA double-strand break repair3–5. Recent studies suggest that the SCID defect lies in the gene encoding the catalytic subunit of DMA-dependent protein kinase (DNA-PK; refs 6–8), a nuclear protein made up of the Ku 70 and Ku 86 subunits as well as the large catalytic subunit, DNA-PKcs9,10. Other reports have implied that the SCID phenotype correlates with nonsense mutations at the extreme 3′ end of Prkdc, the DNA-PKcs gene11–14. The identity of the gene remains in doubt, however, because the consequences of genetic inactivation of Prkdc have not been determined. This study shows that complete inactivation of Prkdc in a novel insertional mouse mutant recapitulates the SCID phenotype and that Prkdc and scid are allelic. Significantly, DNA-PKcs null mice demonstrate complete penetrance of thymic lymphoblastic lymphomas, strongly suggesting that Prkdc functions in mice as a T-cell tumour suppressor and, by virtue of its association with DNA repair and recombination, belongs to the ‘caretaker’ class of tumour-suppressor genes that includes ATM, BRCA1 and BRCA2(ref.15).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bosma, G.C., Custer, R.P. & Bosma, M.J. A severe combined immunodeficiency mutation in the mouse. Nature. 301, 527–530 (1983).

    Article  CAS  Google Scholar 

  2. Gellert, M. Recent advances in understanding V(D)J recombination. Adv. Immunol. 64, 39–64 (1997).

    Article  CAS  Google Scholar 

  3. Fulop, G.M. & Phillips, R.A. The scid mutation in mice causes a general defect in DNA repair. Nature. 347, 479–482 (1990).

    Article  CAS  Google Scholar 

  4. Biedermann, K.A., Sun, J.R., Giaccia, A.J., Tosto, L.M. & Brown, J.M. Scid mutation in mice confers hypersensitivity to ionizing radiationand a deficiency in DNA double-strand break repair. Proc. Natl. Acad. Sd. USA 88, 1394–1397 (1991).

    Article  CAS  Google Scholar 

  5. Hendrickson, E.A. et al. A link between double-strand break-related repair and V(D)J recombination: the scid mutation. Proc. Natl. Acad. Sci. USA. 88, 4061–4065 (1991).

    Article  CAS  Google Scholar 

  6. Blunt, T. et al. Defective DNA-dependent protein kinase activity is linked to V(D)J recombination and DNA repair defects associated with the murine scid mutation. Cell 80, 813–823 (1995).

    Article  CAS  Google Scholar 

  7. Kirchgessner, C.U. et al. DNA-dependent kinase (p350) as a candidate gene for the murine SCID defect. Science 267, 1178–1183 (1995).

    Article  CAS  Google Scholar 

  8. Peterson, S.R. et al. Loss of the catalytic subunit of the DNA-dependent protein kinase in DNA double-strand-break-repair mutant mammalian cells. Proc. Natl. Acad. Sci. USA 92, 3171–3174 (1995).

    Article  CAS  Google Scholar 

  9. Gottlieb, T.M. & Jackson, S.P., The DNA-dependent protein kinase: requirement for DNA ends and association with Ku antigen. Cell 72, 131–142 (1993).

    Article  CAS  Google Scholar 

  10. Zhu, C., Bogue, M.A., Lim, D.S., Hasty, P., & Roth, D.B. Ku86-deficient mice exhibit severe combined immunodeficiency and defective processing of V(D)J recombination intermediates. Cell 86, 379–389 (1996).

    Article  CAS  Google Scholar 

  11. Blunt, T. et al. Identification of a nonsense mutation in the carboxyl-terminal region of DNA-dependent protein kinase catalytic subunit in the scid mouse. Proc. Natl. Acad. Sci. USA 93, 10285–10290 (1996).

    Article  CAS  Google Scholar 

  12. Danska, J.S., Holland, D.P., Mariathasan, S., Williams, K.M. & Guidos, C.J. Biochemical and genetic defects in the DNA-dependent protein kinase in murine scid lymphocytes. Mol. Cell. Biol. 16, 5507–5517 (1996).

    Article  CAS  Google Scholar 

  13. Araki, R. et al. Nonsense mutation at Tyr-4046 in the DNA-dependent protein kinase catalytic subunit of severe combined immune deficiency mice. Proc. Natl. Acad. Sci. USA 94, 2438–2443 (1997).

    Article  CAS  Google Scholar 

  14. Shin, E.K., Perryman, L.E. & Meek, K. A kinase-negative mutation of DNA-PK(CS) in equine SCID results in defective coding and signal joint formation.J. Immunol. 158, 3565–3569 (1997).

    CAS  PubMed  Google Scholar 

  15. Kinzler, K.W. & Vogelstein, B. Gatekeepers and caretakers. Nature. 386, 761–763 (1997).

    Article  CAS  Google Scholar 

  16. Strada, S.J., Martin, M.W. & Thompson, W.J. General properties of multiple molecular forms of cyclic nucleotide phosphodiesterase in the nervous system. Adv. Cyclic Nucleotide Protein Phosphorylation Res. 16, 13–29 (1984).

    CAS  PubMed  Google Scholar 

  17. Suoranta, K. & Londesborough, J. Purification of intact and nicked forms of a zinc-containing, Mg2+-dependent, low Km cyclic AMP phosphodiesterase from bakers' yeast. J. Biol. Chem. 259, 6964–6971 (1984).

    CAS  PubMed  Google Scholar 

  18. Sarvetnick, N., Liggitt, D., Pitts, S.L., Hansen, S.E. & Stewart, T.A. Insulin-dependent diabetes mellitus induced in transgenic mice by ectopic expression of class II MHC and interferon-gamma. Cell 52, 773–782 (1988).

    Article  CAS  Google Scholar 

  19. Jhappan, C. et al. TGFα overexpression in transgenic mice induces liver neoplasia and abnormal development of the mammary gland and pancreas. Cell 61, 1137–1146 (1990).

    Article  CAS  Google Scholar 

  20. Miller, R.D. et al. Gene for the catalytic subunit of mouse DNA-dependent protein kinase maps to the scid locus. Proc. Natl. Acad. Sci. USA 92, 10792–10795 (1995).

    Article  CAS  Google Scholar 

  21. Finnie, N.J., Gottlieb, T.M., Blunt, T., Jeggo, P.A. & Jackson, S.P. DNA-dependent protein kinase activity is absent in xrs-6 cells: implications for site-specific recombination and DNA double-strand break repair. Proc. Natl. Acad. Sci. USA 92, 320–324 (1995).

    Article  CAS  Google Scholar 

  22. Anderson, C.W. & Lees-Miller, S.P. The nuclear serine/threonine protein kinase DNA-PK. Crit. Rev. Eukaryotic Gene Express. 2, 283–314 (1992).

    CAS  Google Scholar 

  23. Lees-Miller, S.P., Sakaguchi, K., Ullrich, S.J., Appella, E. & Anderson, C.W., Human DNA-activated protein kinase phosphorylates serines 15 and 37 in the amino-terminal transactivation domain of human p53. Mol. Cell. Biol. 12, 5041–5049 (1992).

    Article  CAS  Google Scholar 

  24. Hartley, K.O. et al. DNA-dependent protein kinase catalytic subunit: a relative of phosphatidylinositol 3-kinase and the ataxia telangiectasia gene product. Cell 82, 849–856 (1995).

    Article  CAS  Google Scholar 

  25. Nussenzweig, A. et al. Requirement for Ku80 in growth and immunoglobulin V(D)J recombination. Nature. 382, 551–555 (1996).

    Article  CAS  Google Scholar 

  26. Carroll, A.M., Hardy, R.R. & Bosma, M.J. Occurrence of mature B (IGM+, B220+) and T (CD3+) lymphocytes in scid mice. J. Immunol. 143, 1087–1093 (1989).

    CAS  PubMed  Google Scholar 

  27. Custer, R.P., Bosma, G.C. & Bosma, M.J. Severe combined immunodeficiency (SCID) in the mouse: pathology, reconstitution, neoplasms. Am. J. Pathol. 120, 464–477 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Savitsky, K. et al. A single ataxia telangiectasia gene with a product similar to Pl-3 kinase. Science. 268, 1749–1753 (1995).

    Article  CAS  Google Scholar 

  29. Hakem, R. et al. The tumor suppressor gene Brcal is required for embryonic cellular proliferation in the mouse. Cell 85, 1009–1023 (1996).

    Article  CAS  Google Scholar 

  30. Sharan, S.K. et al. Embryonic lethality and radiation hypersensitivity mediated by Rad51 in mice lacking Brca2. Nature 386, 804–810 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jhappan, C., Morse, H., Fleischmann, R. et al. DNA-PKcs: a T-cell tumour suppressor encoded at the mouse scid locus. Nat Genet 17, 483–486 (1997). https://doi.org/10.1038/ng1297-483

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1297-483

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing