Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A duplication in the L1CAM gene associated with X–linked hydrocephalus

Abstract

Recently, a mutation in the gene for the neural cell adhesion molecule L1CAM, located at chromosome Xq28, was found in a family with X–linked hydrocephalus (HSAS). However, as the L1CAM mutation could only be identified in one HSAS family, it remained unclear whether or not L1CAM was the gene responsible for HSAS. We have conducted a mutation analysis of L1CAM in 25 HSAS families. The mutation reported previously was not found in any of these families. In one family, however, a 1.3 kilobases (kb) genomic duplication was identified, cosegregating with HSAS and significantly changing the intracellular domain of the L1CAM protein. These results confirm that L1CAM is the HSAS gene.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. McKusick, V.A. Mendelian Inheritance in Man: Catalogs of Autosomal Dominant, Autosomal Recessive and X-linked Phenotypes (John Hopkins University Press, Baltimore, 1988).

    Google Scholar 

  2. Burton, B.K. Recurrence risk for congenital hydrocephalus. Clin. Genet. 16, 47–53 (1979).

    Article  CAS  Google Scholar 

  3. Halliday, J., Chow, C.W., Wallace, D. & Danks, D.M. X-linked hydrocephalus: A survey of a 20 year period in Victoria, Australia. J. med. Genet. 23, 23–31 (1986).

    Article  CAS  Google Scholar 

  4. Fried, K. X-linked mental retardation and/or hydrocephalus. Clin. Genet. 3, 258–263 (1972).

    Article  CAS  Google Scholar 

  5. Willems, P.J., Brouwer, O.F., Dijkstra, I. & Wilmink, J. X-linked hydrocephalus. Am. J. med. Genet. 27, 921–928 (1987).

    Article  CAS  Google Scholar 

  6. Serville, F. et al. X-linked hydrocephalus: clinical heterogeneity at a single gene locus. Eur. J. Pediatr. 151, 515–518 (1992).

    Article  CAS  Google Scholar 

  7. Landrieu, P., Ninane, J., Ferrière, G. & Lyon, G. Aqueductal stenosis in X-linked hydrocephalus: a secondary phenomenon? Develop. Med. child Neurol. 21, 637–652 (1979).

    Article  CAS  Google Scholar 

  8. Edwards, J.H., Norman, R.M. & Roberts, J.M. Sex-linked hydrocephalus: report of a family with 15 affected members. Arch. Dis. Child. 36, 481–485 (1961).

    Article  CAS  Google Scholar 

  9. Bickers, D.S. & Adams, R.D. Hereditary stenosis of the aqueduct of Sylvius as a cause of congenital hydrocephalus. Brain 72, 246–262 (1949).

    Article  CAS  Google Scholar 

  10. Cassie, R. & Boon, A.R. Sex-linked hydrocephalus. J. med. Genet. 14, 72–73 (1977).

    Article  CAS  Google Scholar 

  11. Willems, P.J. et al. Assignment of X-linked hydrocephalus to Xq28 by linkage analysis. Genomics 8, 367–370 (1990).

    Article  CAS  Google Scholar 

  12. Holden, J.J.A. et al. Further evidence localizing the X-linked hydrocephalus locus to Xq28. Am. J. med. Genet. 47, A183 (1990).

    Google Scholar 

  13. Friedman, K.J. et al. Linkage studies in a four generation family with X-linked hydrocephalus associated with flexed index fingers. Proceedings of the 23rd annual March of Dimes Clinical Genetics conference (Vancouver, July 7–10 1991).

  14. Lyonnet, S. et al. The gene for X-linked hydrocephalus maps to Xq28, distal to DXS. Genomics 14, 508–510 (1992).

    Article  CAS  Google Scholar 

  15. Orth, U., Enders, H., Reicke, S., Schwinger, E. & Gal, A. Gene of X-linked hydrocephalus is closely linked to DXS52 and DXS115 in Xq28. Cytogenet. cell Genet. 58, 2079 (1991).

    Google Scholar 

  16. Jouet, M. et al. Refining the genetic localisation of the gene for X-linked hydrocephalus within Xq28. J. med. Genet. 30, 214–217 (1993).

    Article  CAS  Google Scholar 

  17. Willems, P.J. et al. Further localization of X-linked hydrocephalus in the chromosomal region Xq28. Am. J. hum. Genet. 51, 307–315 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Rosenthal, A., Jouet, M. & Kenwrick, S. Aberrant splicing of neural ceil adhesion molecule L1 mRNA in a family with X-linked hydrocephalus. Nature Genet. 2, 107–112 (1992).

    Article  CAS  Google Scholar 

  19. Hlavin, M.L. & Lemmon, V. Molecular structure and functional testing of human L1. Genomics 11, 416–423 (1991).

    Article  CAS  Google Scholar 

  20. Rosenthal, A., MacKinnon, R.N. & Jones, D.C.S. PCR walking from microdissection clone M54 identifies three exons from the human gene for the neural cell adhesion molecule L1 (CAM-L1). Nucl. Acids Res. 19, 5395–5401 (1991).

    Article  CAS  Google Scholar 

  21. Reid, R.A. & Hemperly, J.J. Variants of human L1-cell adhesion molecule arise through alternate splicing of RNA. J. molec. Neurosci. 3, 127–135 (1992).

    Article  CAS  Google Scholar 

  22. Miura, M., Kobayashi, M., Asou, H. & Uyemura, K. Molecular cloning of cDNA encoding the rat neural cell adhesion molecule L1 —two L1 isoforms in the cytoplasmic region are produced by differential splicing. FEBS Lett. 289, 91–95 (1991).

    Article  CAS  Google Scholar 

  23. Harper, J.R. et al. Isolation and sequence of partial cDNA clones of human L1 —homology of human and rodent L1 in the cytoplasmic region. J. Neurochem. 56, 797–804 (1991).

    Article  CAS  Google Scholar 

  24. Schachner, M. Neural recognition molecules and their influence on cellular functions. In The Nerve Growth Cone (Ruven Press, New York, 1992).

    Google Scholar 

  25. Asou, H., Miura, M., Kobayashi, M., Uyemura, K. & Itoh, K. Cell adhesion molecule L1 guides cell migration in primary reaggregation cultures of mouse cerebellar cells. Neurosci. Lett. 144, 221–224 (1992).

    Article  CAS  Google Scholar 

  26. Miura, M., Asou, H., Kobayashi, M. & Uyemura, K. Functional expression of a full-length cDNA coding for rat neural cell adhesion molecule L1 mediates homophilic intercellular adhesion and migration of cerebellar neurons. J. biol. Chem. 267, 10752–10758 (1992).

    CAS  PubMed  Google Scholar 

  27. Lemmon, V., Farr, K.L. & Lagenaur, C. L1-mediated axon outgrowth occurs via a homophilic binding mechanism. Neuron 2, 1597–1603 (1989).

    Article  CAS  Google Scholar 

  28. Williams, E.J. et al. Calcium influx into neurons can solely account for cell contact-dependent neurite outgrowth stimulated by transfected L1. J. cell Biol. 119, 883–892 (1992).

    Article  CAS  Google Scholar 

  29. Renier, W.O., Ter Haar, B.G.A., Slooff, J.L., Hustinckx, T.W.J. & Gabreëls, F.J.M. X-linked congenital hydrocephalus. Clin. neurol. Neurosurg. 84, 113–123 (1982).

    Article  CAS  Google Scholar 

  30. Váradi, V., Csécsei, K., Szeifert, G.T., Tóth, Z. & Papp, Z. Prenatal diagnosis of X linked hydrocephalus without aqueductal stenosis. J. med. Genet. 24, 207–209 (1987).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Camp, G., Vits, L., Coucke, P. et al. A duplication in the L1CAM gene associated with X–linked hydrocephalus. Nat Genet 4, 421–425 (1993). https://doi.org/10.1038/ng0893-421

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0893-421

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing