Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A single mouse gene encodes the mitochondrial transcription factor A and a testis–specific nuclear HMG-box protein

Abstract

Mitochondrial transcription factor A (mtTFA) is a key regulator of mammalian mitochondrial DMA transcription. We report here that a testis–specific isoform of mouse mtTFA lacks the mitochondrial targeting sequence and is present in the nucleus of spermatocytes and elongating spermatids, thus representing the first reported mammalian gene encoding protein isoforms targeted for the mitochondria or the nucleus. The presence of the mitochondrial transcriptional activator in the nucleus raises the possibility of a role for this protein in both genetic systems. Mutations in the nuclear mtTFA gene may therefore exhibit phenotypic consequences due to altered function in either or both genetic compartments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Parisi, M.A. & Clayton, D.A. Similarity of human mitochondrial transcription factor 1 to high mobility group proteins. Science 252, 965–969 (1991).

    Article  CAS  Google Scholar 

  2. Tiranti, V. et al. Chromosomal localization of mitochondrial transcription factor A (TCF6), single-stranded DNA-binding protein (SSBP), and endonuclease G (ENDOG), three human housekeeping genes involved in mitochondrial biogenesis. Genomics 25, 559–664 (1995).

    Article  CAS  Google Scholar 

  3. Clayton, D.A. Replication and transcription of vertebrate mitochondrial DNA. Annu. Rev. Cell Biol. 7, 453–478 (1991).

    Article  CAS  Google Scholar 

  4. Ryan, K.R. & Jensen, R.E. Protein translocation across mitochondrial membranes: what a long, strange trip it is. Cell 83, 517–519 (1995).

    Article  CAS  Google Scholar 

  5. Fisher, R.P., Parisi, M.A. & Clayton, D.A. Flexible recognition of rapidly evolving promoter sequences by mitochondrial transcription factor 1. Genes Dev. 3, 2202–2217 (1989).

    Article  CAS  Google Scholar 

  6. Fisher, R.P., Lisowsky, I., Parisi, M.A. & Clayton, D.A. DNA wrapping and bending by a mitochondrial high mobility group-like transcriptional activator protein. J. Biol. Chem. 267, 3358–3367 (1992).

    CAS  PubMed  Google Scholar 

  7. Boissonneault, G. & Lau, Y.-F.C. A testis-specific gene encoding a nuclear high-mobility-group box protein located in elongating spermatids. Mol. Cell. Biol. 13, 4323–4330 (1993).

    Article  CAS  Google Scholar 

  8. Dairaghi, D.J., Shadel, G.S. & Clayton, D.A. Addition of a 29 residue carboxyl-terminal tail converts a simple HMG box-containing protein into a transcriptional activator. J. Mol. Biol. 249, 11–28 (1995).

    Article  CAS  Google Scholar 

  9. Grosschedl, R., Giese, K. & Pagel, J. HMG domain proteins: architectural elements in the assembly of nucleoprotein structures. Trends Genet. 10, 94–100 (1994).

    Article  CAS  Google Scholar 

  10. Parisi, M.A., Xu, B. & Clayton, D.A. A human mitochondrial transcriptional activator can functionally replace a yeast mitochondrial HMG-box protein both in vivo and in vitro. Mol. Cell. Biol. 13, 1951–1961 (1993).

    Article  CAS  Google Scholar 

  11. Erickson, R.P. Post-meiotic gene expression. Trends Genet. 6, 264–269 (1990).

    Article  CAS  Google Scholar 

  12. Hecht, N.B., Liem, H., Kleene, K.C., Distel, R.J. & Ho, S.-M. Maternal inheritance of the mouse mitochondrial genome is not mediated by loss or gross alteration of the paternal mitochondrial DNA or by methylation of the oocyte mitochondrial DNA. Dev. Biol. 102, 452–161 (1984).

    Article  CAS  Google Scholar 

  13. Kaneda, H. et al. Elimination of paternal mitochondrial DNA in intraspecific crosses during early mouse embryogenesis. Proc. Natl. Acad. Sci. USA 92, 4542–546 (1995).

    Article  CAS  Google Scholar 

  14. Larsson, N.-G., Oldfors, A., Holme, E. & Clayton, D.A. Low levels of mitochondrial transcription factor A in mitochondrial DNA depletion. Biochem. Biophys. Res. Comm. 200, 1374–1381 (1994).

    Article  CAS  Google Scholar 

  15. Poulton, J. et al. Deficiency of the human mitochondrial transcription factor h-mtTFA in infantile mitochondrial myopathy is associated with mt DNA depletion. Hum. Mol. Genet. 3, 1763–1769 (1994).

    Article  CAS  Google Scholar 

  16. Larsson, N.-G. & Clayton, D.A. Molecular genetic aspects of human mitochondrial disorders. Annu. Rev. Genet. 29, 151–178 (1995).

    Article  CAS  Google Scholar 

  17. Sambrook, J., Fritsch, E.F. & Maniatis, T. Molecular Cloning. A laboratory manual. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1989).

    Google Scholar 

  18. Fisher, R.P. & Clayton, D.A. A transcription factor required for promoter recognition by human mitochondrial RNA polymerase.Accurate initiation at the heavy and light-strand promoters dissected and reconstituted in vitro. J. Biol. Chem. 260, 11330–11338 (1985).

    CAS  PubMed  Google Scholar 

  19. Hager, D.A. & Burgess, R.R. Elution of proteins from sodium-dodecyl-sulfate-polyacrylamide gels, removal of sodium dodecyl sulfate, and renaturation of enzymatic activity: Results with sigma subunit of Escherichia coli RNA polymerase, wheat germ DNA topoisomerase, and other enzymes. Analyt. Biochem. 109, 76–86 (1980).

    Article  CAS  Google Scholar 

  20. Thompson, N.E., Steinberg, T.H., Aronson, D.B. & Burgess, R.R. Inihibition of in vivo and in vitro transcription by monoclonal antibodies prepared against wheat germ RNA polymerase II that react with the heptapeptide repeat of eukaryotic RNA polymerase II. J. Biol. Chem. 264, 11511–11520 (1989).

    CAS  PubMed  Google Scholar 

  21. Michael, N.L. et al. All eight unassigned reading frames of mouse mitochondrial DNA are expressed. EMBO J. 3, 3165–3175 (1984).

    Article  CAS  Google Scholar 

  22. Tapper, D.P., Van Etten, R.A. & Clayton, D.A. Isolation of mammalian mitochondrial DNA and RNA and cloning of the mitochondrial genome. in Methods in Enzymology. 97, 426–434 (Academic Press, New York, 1983).

    Google Scholar 

  23. Dignam, J.D., Lebovitz, R.M. & Roeder, R.G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucl. Acids Res. 11, 1475–1489 (1983).

    Article  CAS  Google Scholar 

  24. Bensadoun, A. & Weinstein, D. Assay of proteins in the presence of interfering materials. Analyt. Biochem. 70, 241–250 (1976).

    Article  CAS  Google Scholar 

  25. Kozak, M. The scanning model for translation: an update. J. Cell Biol. 108, 229–241 (1989).

    Article  CAS  Google Scholar 

  26. Görlich, D. & Mattaj, I. Nucleocytoplasmic transport. Science 271, 1513–1518 (1996).

    Article  Google Scholar 

  27. Kornberg, A. & Baker, T.A. DNA replication. 2nd Edn. (W.H. Freeman & Co., New York, 1991).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Clayton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larsson, NG., Garman, J., Oldfors, A. et al. A single mouse gene encodes the mitochondrial transcription factor A and a testis–specific nuclear HMG-box protein. Nat Genet 13, 296–302 (1996). https://doi.org/10.1038/ng0796-296

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0796-296

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing