Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Maternal imprinting of human SNRPN, a gene deleted in Prader–Willi syndrome

Abstract

Prader–Willi syndrome (PWS), a human neuroendocrine disorder, is associated with deficiencies of paternal chromosome 15q12. Small nuclear ribonucleoprotein polypeptide N (SNRPN) is the first expressed gene identified in the PWS critically deleted region. Following our demonstration that the murine homologue of SNRPN is imprinted, we have characterized a sequence polymorphism within expressed portions of human SNRPN and show that human SNRPN is monoallelically expressed in fetal brain and heart and in adult brain. Analysis of maternal DNA and SNRPN cDNA confirmed that the maternal allele of SNRPN is not expressed in fetal brain and heart. Maternal imprinting of SNRPN supports the hypothesis that paternal absence of SNRPN is responsible for the PWS phenotype.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cassidy, S.B. Prader Willi syndrome. Curr. Prob. Pediatr. 14, 1–55 (1984).

    CAS  Google Scholar 

  2. Prader, A., Labhart, A. & Wilii, H. Ein syndrom von Adipositas, kleinwuchs, kryptochismus und ologophrenie nach myotonieartigem zustand in neugeborenalter. Schweiz. Med. Wochenschr. 86, 1260–1261 (1956).

    Google Scholar 

  3. Ledbetter, D.H. et al. Deletions of chromosome 15 as a cause of the Prader-Willi syndrome. New Engl. J. Med. 304, 325–329 (1981).

    Article  CAS  PubMed  Google Scholar 

  4. Nicholls, R.D. et al. Genetic imprinting suggested by maternal heterodisomy in non-deletion Prader-Willi syndrome. Nature 342, 281–285 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Knoll, J.H.M. et al. Angelman and Prader-Willi syndromes share a common chromosome 15 deletion, but differ in parental origin of the deletion. Am. J. meet. Genet. 32, 285–290 (1989).

    Article  CAS  Google Scholar 

  6. Özçelik, T. et al. Small nuclear ribonucleoprotein polypeptide N (SNRPN), an expressed gene in the Prader-Willi syndrome critical region. Nature Genet. 2, 265–269 (1992).

    Article  PubMed  Google Scholar 

  7. Steitz, J.A., Black, D.L., Gerke, V. & Parker, K.A. Function of the abundant U-snRNPs. In Structure and Function of Major and Minor Small Nuclear Ribonuclear Ribonucleoprotein particles (ed. M.L. Bimstiel)115–154 (Springer-Verlag, New York, 1987).

    Google Scholar 

  8. Zieve, G.W. & Sauterer, R.A. Cell biology of the snRNP particles. Crit. Rev. Biochem. molec. Biol. 25, 1–46 (1990).

    Article  CAS  Google Scholar 

  9. Hamm, J., Darzynkiewicz, E., Tahara, S.M. & Mattaj, I.W. The trimethylguanosine cap structure of U1 snRNA is a component of a bipartite nuclear targeting signal. Cell 62, 569–577 (1990).

    Article  CAS  PubMed  Google Scholar 

  10. Feeney, R.J., Sauterer, R.A., Feeney, J.L. & Zieve, G.W. Cytoplasmic assembly and nuclear accumulation of mature small nuclear ribonucleoprotein particles. J. biol. Chem. 264, 5576–5783 (1989).

    Google Scholar 

  11. Left, S.E. et al. Maternal imprinting of the mouse Snrpn gene and conserved linkage homology with the human Prader-Wiili syndrome region. Nature Genet. 2, 259–264 (1992).

    Article  Google Scholar 

  12. Cattanach, B.M. et al. A candidate mouse model for Prader-Willi syndrome which shows an absence of Snrpn expression. Nature Genet. 2, 270–274 (1992).

    Article  CAS  PubMed  Google Scholar 

  13. Hayashi, K. PCR-SSCP: a simple and sensitive method for detection of mutations in the genomic DNA. PCR Meth. Appl. 1, 34–38 (1991).

    Article  CAS  Google Scholar 

  14. Rokeach, L.A., Jannatipour, M., Haselby, J.A. & Hoch, S.A. Primary structure of a human small nuclear ribonucleoprotein polypeptide as deduced by cDNA analysis. J. biol. Chem. 264, 5024–5030 (1989).

    CAS  PubMed  Google Scholar 

  15. Innis, M.A., Myambo, K.B., Gelfand, D.H. & Brow, M.A.D. DNA sequencing with Thermus aquaticus DNA polymerase and direct sequencing of polymerase chain reaction-amplified DNA. Proc. natn. Acad. Sci. U.S.A. 85, 9436–9440 (1988).

    Article  CAS  Google Scholar 

  16. Bartolomei, M.S., Zemel, S. & Tilghman, S.M. Parental imprinting of the mouse H19 gene. Nature 351, 153–155 (1991).

    Article  CAS  PubMed  Google Scholar 

  17. Zhang, Y. & Tycko, B. Monoallelic expression of the human H19 gene. Nature Genet. 1, 40–44 (1992).

    Article  CAS  PubMed  Google Scholar 

  18. Zhang, Y. et al. Imprinting of human H19: allele specific CpG methylation, loss of the active allele in Wilms tumor, and potential for somatic allele switching. Am. J. hum. Genet. 53, 113–124 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. DeChiara, T.M., Roberston, E.J. & Efstratiadis, A. Parental imprinting of the mouse insulin-like growth factor II gene. Cell 64, 849–859 (1991).

    Article  CAS  PubMed  Google Scholar 

  20. Ogawa, O. et al. Relaxation of insulin-like growth factor II gene imprinting in Wilms' tumor. Nature 362, 749–751 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. Rainier, S. et al. Relaxation of imprinted genes in human cancer. Nature 362, 747–749 (1993).

    Article  CAS  PubMed  Google Scholar 

  22. Giannoukakis, N., Deal, C., Paquete, J., Goodyer, C.G. & Polychronakos, C. Parental genomic imprinting of the human IGF2 gene. Nature Genet. 4, 98–101 (1993).

    Article  CAS  PubMed  Google Scholar 

  23. Ohlsson, R. et al. IGF2 is parentally imprinted during human embryogenesis and in the Beckwith-Wiedemann syndrome. Nature Genet. 4, 94–97 (1993).

    Article  CAS  PubMed  Google Scholar 

  24. Barlow, D.P., Stöger, R., Herrmann, B.G., Saito, K. & Schweifer, N. The mouse insulin-like growth factor type two receptor is imprinted and closely linked to the Tme locus. Nature 349, 84–87 (1991).

    Article  CAS  PubMed  Google Scholar 

  25. Kalscheuer, V.M., Mariman, E.C., Schepens, M.T., Rehder, H. & Ropers, H.-H. The insulin-like growth factor type-2 receptor gene is imprinted in the mouse but not in humans. Nature Genet. 5, 74–78 (1993).

    Article  CAS  PubMed  Google Scholar 

  26. Forejt, J. & Gregorova, S. Genetic analysis of genomic imprinting: an lmprintor-1 gene controls inactivation of the paternal copy of the mouse Tme locus. Cell 70, 443–450 (1992).

    Article  CAS  PubMed  Google Scholar 

  27. Magenis, R.E. et al. Comparison of the 15q deletions in Prader-Willi and Angeiman syndromes: specific regions, extent of deletions, parental origin, and clinical consequences. Am. J. med. Genet. 35, 333–349 (1990).

    Article  CAS  PubMed  Google Scholar 

  28. Nakatsu, Y. et al. A cluster of three GABAA receptor subunit genes is deleted in a neurological mutant of the mouse p locus. Nature 346, 448–450 (1993).

    Article  Google Scholar 

  29. Ogawa, O. et al. Constitutional relaxation of insulin-like growth factor II gene imprinting associated with Wilms' tumour and gigantism. Nature Genet. 5, 408–412 (1993).

    Article  CAS  PubMed  Google Scholar 

  30. Kitsberg, D. et al. Allele-specific replication timing of imprinted gene regions. Nature 364, 459–463 (1993).

    Article  CAS  PubMed  Google Scholar 

  31. Schmauss, C., McAllister, G., Ohosone, Y., Hardin, J.A. & Lerner, M.R. A comparison of snRNP-associated Sm-autoantigens: human N, rat N and human B/B'. Nucl. Acids Res. 17, 1733–1743 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Grimaldi, K. et al. Expression of the SmN splicing protein is developmentally regulated in the rodent brain but not in the rodent heart. Dev. Biol. 156, 319–323 (1993).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reed, M., Leff, S. Maternal imprinting of human SNRPN, a gene deleted in Prader–Willi syndrome. Nat Genet 6, 163–167 (1994). https://doi.org/10.1038/ng0294-163

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0294-163

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing