Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Optimizing therapy with methylation inhibitors in myelodysplastic syndromes: dose, duration, and patient selection

Abstract

Azacitidine (Vidaza®, Pharmion Corp., Boulder, CO, USA) and decitabine (Dacogen™, SuperGen, Inc., Dublin, CA, USA, and MGI Pharma, Inc., Bloomington, MN, USA) are DNA methyltransferase (DNMT) inhibitors that have clinical activity in patients with myelodysplastic syndromes. Mechanism-based laboratory studies suggest that clinical optimization of therapy with DNMT inhibitors needs to include optimizing intracellular drug uptake and maximizing drug exposure over time while still using lower doses to avoid cytotoxicity. Clinical studies suggest that increased dose intensity and multiple cycles of administration substantially increase response rates. Other strategies for optimizing the efficacy of DNMT inhibitor therapy also include identification of patients that are best qualified for treatment, and defining in vivo mechanisms of patient responses. In the future, combination strategies to increase gene reactivation and to take advantage of increased expression of target genes may be critical for achieving optimal results.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Aul C et al. (2002) Myelodysplastic syndromes. Diagnosis and therapeutic strategies [in German]. Med Klin (Munich) 97: 666–676

    Google Scholar 

  2. Kurzrock R (2002) Myelodysplastic syndrome overview. Semin Hematol 39: 18–25

    CAS  PubMed  Google Scholar 

  3. Cooper DN (1983) Eukaryotic DNA methylation. Hum Genet 64: 315–333

    CAS  PubMed  Google Scholar 

  4. Jones PA et al. (1983) DNA modification, differentiation, and transformation. J Exp Zool 228: 287–295

    CAS  PubMed  Google Scholar 

  5. Ando T et al. (2000) Decitabine (5-Aza-2'-deoxycytidine) decreased DNA methylation and expression of MDR-1 gene in K562/ADM cells. Leukemia 14: 1915–1920

    CAS  PubMed  Google Scholar 

  6. Ley TJ et al. (1983) DNA methylation and globin gene expression in patients treated with 5-azacytidine. Prog Clin Biol Res 134: 457–474

    CAS  PubMed  Google Scholar 

  7. Gattei V et al. (1993) In vitro and in vivo effects of 5-aza-2'-deoxycytidine (Decitabine) on clonogenic cells from acute myeloid leukemia patients. Leukemia 7 (Suppl 1): 42–48

    PubMed  Google Scholar 

  8. Leone G et al. (2002) DNA methylation and demethylating drugs in myelodysplastic syndromes and secondary leukemias. Haematologica 87: 1324–1341

    CAS  PubMed  Google Scholar 

  9. Blanchard F et al. (2003) DNA methylation controls the responsiveness of hepatoma cells to leukemia inhibitory factor. Hepatology 38: 1516–1528

    CAS  PubMed  Google Scholar 

  10. Silverman LR et al. (2002) Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B. J Clin Oncol 20: 2429–2440

    CAS  PubMed  Google Scholar 

  11. Saba H et al. (2004) First report of the phase III North American trial of decitabine in advanced myelodysplastic syndrome (MDS) [abstract]. Blood 104: 23A

    Google Scholar 

  12. Kantarjian HM et al. (2004) Decitabine low-dose schedule (100 mg/m(2)/course) in myelodysplastic syndrome (MDS). Comparison of 3 different dose schedules. Blood 104: 402A–403A

    Google Scholar 

  13. Issa J-P et al. (2004) Phase 1 study of low-dose prolonged exposure schedules of the hypomethylating agent 5-aza-2'-deoxycytidine (decitabine) in hematopoietic malignancies. Blood 103: 1635–1640

    CAS  PubMed  Google Scholar 

  14. Kaminskas E et al. (2005) Approval summary azacitidine for treatment of myelodysplastic syndrome subtypes. Clin Cancer Res 11: 3604–3608

    CAS  PubMed  Google Scholar 

  15. Anon (2003) Decitabine: 2'-deoxy-5-azacytidine, Aza dC, DAC, dezocitidine, NSC 127716. Drugs R&D 4: 352–358

  16. Saba H et al. Advanced myelodysplastic syndromes: patient subset results of a phase III trial comparing decitabine with supportive care [abstract]. J Clin Oncol 23: 6543

  17. Saiki JH et al. (1978) 5-Azacytidine in acute leukemia. Cancer 42: 2111–2114

    CAS  PubMed  Google Scholar 

  18. Vogler WR et al. (1976) 5-Azacytidine (NSC 102816): a new drug for the treatment of myeloblastic leukemia. Blood 48: 331–337

    CAS  PubMed  Google Scholar 

  19. Von Hoff DD et al. (1976) 5-Azacytidine. A new anticancer drug with effectiveness in acute myelogenous leukemia. Ann Intern Med 85: 237–245

    CAS  PubMed  Google Scholar 

  20. Schiffer CA et al. (1982) Treatment of the blast crisis of chronic myelogenous leukemia with 5-azacitidine and VP-16–213. Cancer Treat Rep 66: 267–271

    CAS  PubMed  Google Scholar 

  21. Lee EJ et al. (1990) Low dose 5-azacytidine is ineffective for remission induction in patients with acute myeloid leukemia. Leukemia 4: 835–838

    CAS  PubMed  Google Scholar 

  22. Kornblith AB et al. (2002) Impact of azacytidine on the quality of life of patients with myelodysplastic syndrome treated in a randomized phase III trial: a Cancer and Leukemia Group B study. J Clin Oncol 20: 2441–2452

    CAS  PubMed  Google Scholar 

  23. Schwartsmann G et al. (1997) Decitabine (5-Aza-2'-deoxycytidine; DAC) plus daunorubicin as a first line treatment in patients with acute myeloid leukemia: preliminary observations. Leukemia 11 (Suppl 1): 28–31

    Google Scholar 

  24. Petti MC et al. (1993) Pilot study of 5-aza-2'-deoxycytidine (Decitabine) in the treatment of poor prognosis acute myelogenous leukemia patients: preliminary results. Leukemia 7 (Suppl 1): 36–41

    PubMed  Google Scholar 

  25. Willemze R et al. (1997) A randomized phase II study on the efects of 5-Aza-2'-deoxycytidine combined with either amsacrine or idarubicin in patients with relapsed acute leukemia: an EORTC Leukemia Cooperative Group phase II study (06893). Leukemia 11 (Suppl 1): 24–27

    Google Scholar 

  26. Wijermans PW et al. (1997) Continuous infusion of low-dose 5-Aza-2'-deoxycytidine in elderly patients with high-risk myelodysplastic syndrome. Leukemia 11 (Suppl 1): 19–23

    Google Scholar 

  27. Wijermans PW et al. (2000) Low-dose 5-aza-2'-deoxycytidine, a DNA hypomethylating agent, for the treatment of high-risk myelodysplastic syndrome: a multicenter phase II study in elderly patients. J Clin Oncol 18: 956–962

    CAS  PubMed  Google Scholar 

  28. Saba HI and Wijermans PW (2005) Decitabine in myelodysplastic syndromes. Semin Hematol 42 (Suppl 2): S23–S31

    CAS  PubMed  Google Scholar 

  29. Miller KB (2000) Myelodysplastic syndromes. Curr Treat Options Oncol 1: 63–69

    CAS  PubMed  Google Scholar 

  30. Candoni A et al. (2004) Targeted therapies in myelodysplastic syndromes: ASH 2003 review. Semin Hematol 41: 13–20

    CAS  PubMed  Google Scholar 

  31. Mufti G et al. (2003) Myelodysplastic syndrome. Hematology (Am Soc Hematol Educ Program): 176–199

  32. Alessandrino EP et al. (2002) Evidence- and consensus-based practice guidelines for the therapy of primary myelodysplastic syndromes. A statement from the Italian Society of Hematology. Haematologica 87: 1286–1306

    PubMed  Google Scholar 

  33. Cutler CS et al. (2004) A decision analysis of allogeneic bone marrow transplantation for the myelodysplastic syndromes: delayed transplantation for low-risk myelodysplasia is associated with improved outcome. Blood 104: 579–585

    CAS  PubMed  Google Scholar 

  34. List A et al. (2005) Efficacy of lenalidomide in myelodysplastic syndromes. N Engl J Med 352: 549–557

    CAS  PubMed  Google Scholar 

  35. Lee EJ et al. (1990) Low dose 5-azacytidine is ineffective for remission induction in patients with acute myeloid leukemia. Leukemia 4: 835–838

    CAS  PubMed  Google Scholar 

  36. Petti MC et al. (1993) Pilot study of 5-aza-2'-deoxycytidine (Decitabine) in the treatment of poor prognosis acute myelogenous leukemia patients: preliminary results. Leukemia 7 (Suppl 1): 36–41

    PubMed  Google Scholar 

  37. Issa J-P et al. (2005) Phase II study of low-dose decitabine in patients with chronic myelogenous leukemia resistant to imatinib mesylate. J Clin Oncol 23: 3948–3956

    CAS  PubMed  Google Scholar 

  38. van den Bosch J et al. (2004) The effects of 5-aza-2'-deoxycytidine (Decitabine) on the platelet count in patients with intermediate and high-risk myelodysplastic syndromes. Leuk Res 28: 785–790

    CAS  PubMed  Google Scholar 

  39. Issa J-P (2003) Decitabine. Curr Opin Oncol 15: 446–451

    CAS  PubMed  Google Scholar 

  40. Jones PA and Taylor SM (1980) Cellular differentiation, cytidine analogs and DNA methylation. Cell 20: 85–93

    CAS  PubMed  Google Scholar 

  41. Momparler RL (2005) Pharmacology of 5-Aza-2'-deoxycytidine (decitabine). Semin Hematol 42: S9–S16

    CAS  PubMed  Google Scholar 

  42. Issa J-P et al. (2005) Azacitidine. Nat Rev Drug Discov 4: 275–276

    CAS  PubMed  Google Scholar 

  43. Maio M et al. (2003) Epigenetic targets for immune intervention in human malignancies. Oncogene 22: 6484–6488

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Pierre Issa.

Ethics declarations

Competing interests

Prof Jean-Pierre Issa has received consulting fees, lecture fees, and research support from SuperGen Corp., MGI Pharma Inc., and Pharmion Corp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Issa, JP. Optimizing therapy with methylation inhibitors in myelodysplastic syndromes: dose, duration, and patient selection. Nat Rev Clin Oncol 2 (Suppl 1), S24–S29 (2005). https://doi.org/10.1038/ncponc0355

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncponc0355

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing