Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of Disease: the pathological basis of gastroparesis—a review of experimental and clinical studies

Abstract

The pathogenesis of gastroparesis is complicated and poorly understood. This lack of understanding remains a major impediment to the development of effective therapies for this condition. Most of the scientific information available on the pathogenesis of gastroparesis has been derived from experimental studies of diabetes in animals. These studies suggest that the disease process can affect nerves (particularly those producing nitric oxide, but also the vagus nerve), interstitial cells of Cajal and smooth muscle. By contrast, human data are sparse, outdated and generally inadequate for the validation of data obtained from experimental models. The available data do, however, suggest that multiple cellular targets are involved. In practice, though, symptoms seldom correlate with objective measures of gastric function and there is still a lot to learn about the pathophysiology of gastroparesis. Future studies should focus on understanding the molecular pathways that lead to gastric dysfunction, in animal models and in humans, and pave the way for the development of rational therapies.

Key Points

  • The pathogenesis of gastroparesis is complex; disruption of gastric function occurs at multiple cellular levels

  • Evidence suggests that the pathogenesis of gastroparesis might involve nerves (particularly those producing nitric oxide, but also the vagus nerve), interstitial cells of Cajal and smooth muscle

  • Most research into the pathogenesis of gastroparesis has been performed in animals; human studies are limited

  • Further studies in animal models and humans are needed to increase our understanding of the molecular pathways that lead to gastric dysfunction so that viable treatment options can be developed

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The importance of inhibitory nitrergic mechanisms in gastric emptying
Figure 2: The main cellular elements involved in gastric motility and sensation
Figure 3: Effects of diabetes on gastric nNOS
Figure 4: Effects on gastric smooth muscle in a patient with type 1 diabetes
Figure 5: Interstitial cells of Cajal and gastroparesis
Figure 6: Enteric neurons and gastroparesis

Similar content being viewed by others

References

  1. Parkman HP et al. (2004) American Gastroenterological Association medical position statement: diagnosis and treatment of gastroparesis. Gastroenterology 127: 1589–1591

    Article  PubMed  Google Scholar 

  2. Maleki D et al. (2000) Gastrointestinal tract symptoms among persons with diabetes mellitus in the community. Arch Intern Med 160: 2808–2816

    Article  CAS  PubMed  Google Scholar 

  3. Soykan I et al. (1998) Demography, clinical characteristics, psychological and abuse profiles, treatment, and long-term follow-up of patients with gastroparesis. Dig Dis Sci 43: 2398–2404

    Article  CAS  PubMed  Google Scholar 

  4. Hoogerwerf WA et al. (1999) Pain: the overlooked symptom in gastroparesis. Am J Gastroenterol 94: 1029–1033

    Article  CAS  PubMed  Google Scholar 

  5. Rayner CK et al. (2001) Relationships of upper gastrointestinal motor and sensory function with glycemic control. Diabetes Care 24: 371–381

    Article  CAS  PubMed  Google Scholar 

  6. Horowitz M et al. (2002) Gastric emptying in diabetes: clinical significance and treatment. Diabet Med 19: 177–194

    Article  CAS  PubMed  Google Scholar 

  7. Horowitz M et al. (2004) Gastric function in diabetes. In Gastrointestinal Function in Diabetes Mellitus, 117 (Eds Horowitz M and Samsom M) Chichester: John Wiley & Sons

    Chapter  Google Scholar 

  8. Samsom M et al. (2003) Prevalence of delayed gastric emptying in diabetic patients and relationship to dyspeptic symptoms: a prospective study in unselected diabetic patients. Diabetes Care 26: 3116–3122

    Article  CAS  PubMed  Google Scholar 

  9. Guo JP et al. (2001) Extending gastric emptying scintigraphy from two to four hours detects more patients with gastroparesis. Dig Dis Sci 46: 24–29

    Article  CAS  PubMed  Google Scholar 

  10. Lartigue S et al. (1994) Inter- and intrasubject variability of solid and liquid gastric emptying parameters. A scintigraphic study in healthy subjects and diabetic patients. Dig Dis Sci 39: 109–115

    Article  CAS  PubMed  Google Scholar 

  11. Thomforde GM et al. (1995) Evaluation of an inexpensive screening scintigraphic test of gastric emptying. J Nucl Med 36: 93–96

    CAS  PubMed  Google Scholar 

  12. Jones KL et al. (2001) Predictors of delayed gastric emptying in diabetes. Diabetes Care 24: 1264–1269

    Article  CAS  PubMed  Google Scholar 

  13. Tack J et al. (1998) Role of impaired gastric accommodation to a meal in functional dyspepsia. Gastroenterology 115: 1346–1352

    Article  CAS  PubMed  Google Scholar 

  14. Kim DY et al. (2001) Noninvasive measurement of gastric accommodation in patients with idiopathic nonulcer dyspepsia. Am J Gastroenterol 96: 3099–3105

    Article  CAS  PubMed  Google Scholar 

  15. Piessevaux H et al. (2003) Intragastric distribution of a standardized meal in health and functional dyspepsia: correlation with specific symptoms. Neurogastroenterol Motil 15: 447–455

    Article  CAS  PubMed  Google Scholar 

  16. Boeckxstaens GE et al. (2002) The proximal stomach and postprandial symptoms in functional dyspeptics. Am J Gastroenterol 97: 40–48

    Article  CAS  PubMed  Google Scholar 

  17. Bredenoord AJ et al. (2003) Gastric accommodation and emptying in evaluation of patients with upper gastrointestinal symptoms. Clin Gastroenterol Hepatol 1: 264–272

    Article  PubMed  Google Scholar 

  18. Samsom M et al. (1998) Proximal gastric motor activity in response to a liquid meal in type I diabetes mellitus with autonomic neuropathy. Dig Dis Sci 43: 491–496

    Article  CAS  PubMed  Google Scholar 

  19. Frank JW et al. (1995) Mechanism of accelerated gastric emptying of liquids and hyperglycemia in patients with type II diabetes mellitus. Gastroenterology 109: 755–765

    Article  CAS  PubMed  Google Scholar 

  20. Jebbink RJ et al. (1994) Hyperglycemia induces abnormalities of gastric myoelectrical activity in patients with type I diabetes mellitus. Gastroenterology 107: 1390–1397

    Article  CAS  PubMed  Google Scholar 

  21. Chen JD et al. (1996) Abnormal gastric myoelectrical activity and delayed gastric emptying in patients with symptoms suggestive of gastroparesis. Dig Dis Sci 41: 1538–1545

    Article  CAS  PubMed  Google Scholar 

  22. Samsom M et al. (1995) Compliance of the proximal stomach and dyspeptic symptoms in patients with type I diabetes mellitus. Dig Dis Sci 40: 2037–2042

    Article  CAS  PubMed  Google Scholar 

  23. Takahashi T and Owyang C (1995) Vagal control of nitric oxide and vasoactive intestinal polypeptide release in the regulation of gastric relaxation in rat. J Physiol 484 (Part 2): 481–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shah V et al. (2004) Nitric oxide in gastrointestinal health and disease. Gastroenterology 126: 903–913

    Article  CAS  PubMed  Google Scholar 

  25. Mashimo H et al. (2000) Gastric stasis in neuronal nitric oxide synthase-deficient knockout mice. Gastroenterology 119: 766–773

    Article  CAS  PubMed  Google Scholar 

  26. Anvari M et al. (1998) Role of nitric oxide mechanisms in control of pyloric motility and transpyloric flow of liquids in conscious dogs. Dig Dis Sci 43: 506–512

    Article  CAS  PubMed  Google Scholar 

  27. Orihata M and Sarna SK (1994) Inhibition of nitric oxide synthase delays gastric emptying of solid meals. J Pharmacol Exp Ther 271: 660–670

    CAS  PubMed  Google Scholar 

  28. Plourde V et al. (1994) Delayed gastric emptying induced by inhibitors of nitric oxide synthase in rats. Eur J Pharmacol 256: 125–129

    Article  CAS  PubMed  Google Scholar 

  29. Takahashi T et al. (1997) Impaired expression of nitric oxide synthase in the gastric myenteric plexus of spontaneously diabetic rats. Gastroenterology 113: 1535–1544

    Article  CAS  PubMed  Google Scholar 

  30. Jenkinson KM and Reid JJ (1995) Effect of diabetes on relaxations to non-adrenergic, non-cholinergic nerve stimulation in longitudinal muscle of the rat gastric fundus. Br J Pharmacol 116: 1551–1556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wrzos HF et al. (1997) Nitric oxide synthase (NOS) expression in the myenteric plexus of streptozotocin-diabetic rats. Dig Dis Sci 42: 2106–2110

    Article  CAS  PubMed  Google Scholar 

  32. Adeghate E et al. (2003) Increase in neuronal nitric oxide synthase content of the gastroduodenal tract of diabetic rats. Cell Mol Life Sci 60: 1172–1179

    Article  CAS  PubMed  Google Scholar 

  33. Spangeus A and El-Salhy M (2001) Myenteric plexus of obese diabetic mice (an animal model of human type 2 diabetes). Histol Histopathol 16: 159–165

    CAS  PubMed  Google Scholar 

  34. Spangeus A et al. (2000) Diabetic state affects the innervation of gut in an animal model of human type 1 diabetes. Histol Histopathol 15: 739–744

    CAS  PubMed  Google Scholar 

  35. El-Salhy M and Spangeus A (1998) Substance P in the gastrointestinal tract of non-obese diabetic mice. Scand J Gastroenterol 33: 394–400

    Article  CAS  PubMed  Google Scholar 

  36. El-Salhy M and Spangeus A (2002) Gastric emptying in animal models of human diabetes: correlation to blood glucose level and gut neuroendocrine peptide content. Ups J Med Sci 107: 89–99

    Article  PubMed  Google Scholar 

  37. Watkins CC et al. (2000) Insulin restores neuronal nitric oxide synthase expression and function that is lost in diabetic gastropathy. J Clin Invest 106: 373–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Guo C et al. (2004) Diabetic autonomic neuropathy: evidence for apoptosis in situ in the rat. Neurogastroenterol Motil 16: 335–345

    Article  CAS  PubMed  Google Scholar 

  39. Hall AV et al. (1994) Structural organization of the human neuronal nitric oxide synthase gene (NOS1). J Biol Chem 269: 33082–33090

    CAS  PubMed  Google Scholar 

  40. Wang Y and Marsden PA (1995) Nitric oxide synthases: gene structure and regulation. Adv Pharmacol 34: 71–90

    Article  CAS  PubMed  Google Scholar 

  41. Wang Y et al. (1999) Neuronal NOS: gene structure, mRNA diversity, and functional relevance. Crit Rev Neurobiol 13: 21–43

    Article  PubMed  Google Scholar 

  42. Wang Y et al. (1999) RNA diversity has profound effects on the translation of neuronal nitric oxide synthase. Proc Natl Acad Sci USA 96: 12150–12155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cellek S (2004) Point of NO return for nitrergic nerves in diabetes: a new insight into diabetic complications. Curr Pharm Des 10: 3683–3695

    Article  CAS  PubMed  Google Scholar 

  44. Cellek S et al. (2003) Two phases of nitrergic neuropathy in streptozotocin-induced diabetic rats. Diabetes 52: 2353–2362

    Article  CAS  PubMed  Google Scholar 

  45. Cellek S et al. (2004) Synergistic action of advanced glycation end products and endogenous nitric oxide leads to neuronal apoptosis in vitro: a new insight into selective nitrergic neuropathy in diabetes. Diabetologia 47: 331–339

    Article  CAS  PubMed  Google Scholar 

  46. Korenaga K et al. (2006) Suppression of nNOS expression in rat enteric neurones by the receptor for advanced glycation end-products. Neurogastroenterol Motil 18: 392–400

    Article  CAS  PubMed  Google Scholar 

  47. Nakamura K et al. (1998) Nicotinic receptor mediates nitric oxide synthase expression in the rat gastric myenteric plexus. J Clin Invest 101: 1479–1489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ghosh DK et al. (1996) Domains of macrophage N(O) synthase have divergent roles in forming and stabilizing the active dimeric enzyme. Biochemistry 35: 1444–1449

    Article  CAS  PubMed  Google Scholar 

  49. Gangula PR et al. (2007) Diabetes induces sex-dependent changes in neuronal nitric oxide synthase dimerization and function in the rat gastric antrum. Am J Physiol Gastrointest Liver Physiol 292: G725–G733

    Article  CAS  PubMed  Google Scholar 

  50. Koya D and King GL (1998) Protein kinase C activation and the development of diabetic complications. Diabetes 47: 859–866

    Article  CAS  PubMed  Google Scholar 

  51. Gibson TM et al. (2003) Effects of alpha-lipoic acid on impaired gastric fundus innervation in diabetic rats. Free Radic Biol Med 35: 160–168

    Article  CAS  PubMed  Google Scholar 

  52. Dishy V et al. (2004) The effect of sildenafil on gastric emptying in patients with end-stage renal failure and symptoms of gastroparesis. Clin Pharmacol Ther 76: 281–286

    Article  CAS  PubMed  Google Scholar 

  53. Sun WM et al. (1998) Effects of nitroglycerin on liquid gastric emptying and antropyloroduodenal motility. Am J Physiol 275: G1173–1178

    CAS  PubMed  Google Scholar 

  54. Ordog T et al. (2000) Remodeling of networks of interstitial cells of Cajal in a murine model of diabetic gastroparesis. Diabetes 49: 1731–1739

    Article  CAS  PubMed  Google Scholar 

  55. Horvath VJ et al. (2006) Reduced stem cell factor links smooth myopathy and loss of interstitial cells of cajal in murine diabetic gastroparesis. Gastroenterology 130: 759–770

    Article  CAS  PubMed  Google Scholar 

  56. Horvath VJ et al. (2005) Reduced insulin and IGF-I signaling, not hyperglycemia, underlies the diabetes-associated depletion of interstitial cells of Cajal in the murine stomach. Diabetes 54: 1528–1533

    Article  CAS  PubMed  Google Scholar 

  57. Choi K et al. (2005) Loss of neuronal nitric oxide synthase results in altered volume and distribution of interstitial cells of Cajal in mouse stomach [abstract]. Neurogastroenterol Motil 17: 612

    Google Scholar 

  58. Tashima K et al. (2000) Gastric acid secretion in streptozotocin-diabetic rats—different responses to various secretagogues. J Physiol Paris 94: 11–17

    Article  CAS  PubMed  Google Scholar 

  59. Tashima K et al. (2000) Acid secretory changes in streptozotocin-diabetic rats: different responses to various secretagogues. Dig Dis Sci 45: 1352–1358

    Article  CAS  PubMed  Google Scholar 

  60. Ishiguchi T et al. (2001) Gastric distension-induced pyloric relaxation: central nervous system regulation and effects of acute hyperglycaemia in the rat. J Physiol 533: 801–813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ishiguchi T et al. (2002) Hyperglycemia impairs antro-pyloric coordination and delays gastric emptying in conscious rats. Auton Neurosci 95: 112–120

    Article  CAS  PubMed  Google Scholar 

  62. Kniel PC et al. (1986) Varied effects of experimental diabetes on the autonomic nervous system of the rat. Lab Invest 54: 523–530

    CAS  PubMed  Google Scholar 

  63. Yagihashi S and Sima AA (1986) Diabetic autonomic neuropathy in BB rat. Ultrastructural and morphometric changes in parasympathetic nerves. Diabetes 35: 733–743

    Article  CAS  PubMed  Google Scholar 

  64. Schmidt RE et al. (1983) Experimental diabetic autonomic neuropathy characterization in streptozotocin-diabetic Sprague-Dawley rats. Lab Invest 49: 538–552

    CAS  PubMed  Google Scholar 

  65. Tay SS and Wong WC (1994) Short- and long-term effects of streptozotocin-induced diabetes on the dorsal motor nucleus of the vagus nerve in the rat. Acta Anat (Basel) 150: 274–281

    Article  CAS  Google Scholar 

  66. Lee PG et al. (2002) Streptozotocin-induced diabetes reduces retrograde axonal transport in the afferent and efferent vagus nerve. Brain Res 941: 127–136

    Article  CAS  PubMed  Google Scholar 

  67. Lee PG et al. (2001) Streptozotocin-induced diabetes causes metabolic changes and alterations in neurotrophin content and retrograde transport in the cervical vagus nerve. Exp Neurol 170: 149–161

    Article  CAS  PubMed  Google Scholar 

  68. Cai F and Helke CJ (2003) Abnormal PI3 kinase/Akt signal pathway in vagal afferent neurons and vagus nerve of streptozotocin-diabetic rats. Brain Res Mol Brain Res 110: 234–244

    Article  CAS  PubMed  Google Scholar 

  69. Carroll SL et al. (2004) Ganglion-specific patterns of diabetes-modulated gene expression are established in prevertebral and paravertebral sympathetic ganglia prior to the development of neuroaxonal dystrophy. J Neuropathol Exp Neurol 63: 1144–1154

    Article  PubMed  Google Scholar 

  70. Schmidt RE (2002) Neuropathology and pathogenesis of diabetic autonomic neuropathy. Int Rev Neurobiol 50: 257–292

    Article  CAS  PubMed  Google Scholar 

  71. Schmidt RE et al. (2003) Non-obese diabetic mice rapidly develop dramatic sympathetic neuritic dystrophy: a new experimental model of diabetic autonomic neuropathy. Am J Pathol 163: 2077–2091

    Article  PubMed  PubMed Central  Google Scholar 

  72. Schmidt RE et al. (2004) Experimental rat models of types 1 and 2 diabetes differ in sympathetic neuroaxonal dystrophy. J Neuropathol Exp Neurol 63: 450–460

    Article  PubMed  Google Scholar 

  73. Schmidt RE et al. (2003) Analysis of the Zucker diabetic fatty (ZDF) type 2 diabetic rat model suggests a neurotrophic role for insulin/IGF-I in diabetic autonomic neuropathy. Am J Pathol 163: 21–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bansal V et al. (2006) Diabetic neuropathy. Postgrad Med J 82: 95–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Vinik AI et al. (2003) Diabetic autonomic neuropathy. Diabetes Care 26: 1553–1579

    Article  PubMed  Google Scholar 

  76. Liao D et al. (2006) Three-dimensional geometry analysis of the stomach in type II diabetic GK rats. Diabetes Res Clin Pract 71: 1–13

    Article  PubMed  Google Scholar 

  77. Takahashi T et al. (1996) Impaired intracellular signal transduction in gastric smooth muscle of diabetic BB/W rats. Am J Physiol 270: G411–G417

    Article  CAS  PubMed  Google Scholar 

  78. Soulie ML et al. (1992) Impairment of contractile response to carbachol and muscarinic receptor coupling in gastric antral smooth muscle cells isolated from diabetic streptozotocin-treated rats and db/db mice. Mol Cell Biochem 109: 185–188

    Article  CAS  PubMed  Google Scholar 

  79. James AN et al. (2004) Regional gastric contractility alterations in a diabetic gastroparesis mouse model: effects of cholinergic and serotoninergic stimulation. Am J Physiol Gastrointest Liver Physiol 287: G612–G619

    Article  CAS  PubMed  Google Scholar 

  80. Lam WF et al. (1993) Hyperglycemia reduces gastric secretory and plasma pancreatic polypeptide responses to modified sham feeding in humans. Digestion 54: 48–53

    Article  CAS  PubMed  Google Scholar 

  81. Mearin F et al. (1986) Pyloric dysfunction in diabetics with recurrent nausea and vomiting. Gastroenterology 90: 1919–1925

    Article  CAS  PubMed  Google Scholar 

  82. Yoshida MM et al. (1988) There are no morphologic abnormalities of the gastric wall or abdominal vagus in patients with diabetic gastroparesis. Gastroenterology 94: 907–914

    Article  CAS  PubMed  Google Scholar 

  83. Guy RJ et al. (1984) Diabetic gastroparesis from autonomic neuropathy: surgical considerations and changes in vagus nerve morphology. J Neurol Neurosurg Psychiatry 47: 686–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ejskjaer NT et al. (1999) Novel surgical treatment and gastric pathology in diabetic gastroparesis. Diabet Med 16: 488–495

    Article  CAS  PubMed  Google Scholar 

  85. Zarate N et al. (2003) Severe idiopathic gastroparesis due to neuronal and interstitial cells of Cajal degeneration: pathological findings and management. Gut 52: 966–970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Forster J et al. (2005) Absence of the interstitial cells of Cajal in patients with gastroparesis and correlation with clinical findings. J Gastrointest Surg 9: 102–108

    Article  PubMed  Google Scholar 

  87. Iwasaki H et al. (2006) A deficiency of gastric interstitial cells of Cajal accompanied by decreased expression of neuronal nitric oxide synthase and substance P in patients with type 2 diabetes mellitus. J Gastroenterol 41: 1076–1087

    Article  CAS  PubMed  Google Scholar 

  88. Pasha SF et al. (2006) Autoimmune gastrointestinal dysmotility treated successfully with pyridostigmine. Gastroenterology 131: 1592–1596

    Article  PubMed  Google Scholar 

  89. De Giorgio R et al. (2003) Anti-HuD-induced neuronal apoptosis underlying paraneoplastic gut dysmotility. Gastroenterology 125: 70–79

    Article  PubMed  Google Scholar 

  90. Srinivasan S et al. (1998) Serum from patients with type 2 diabetes with neuropathy induces complement-independent, calcium-dependent apoptosis in cultured neuronal cells. J Clin Invest 102: 1454–1462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Pardi DS et al. (2002) Paraneoplastic dysmotility: loss of interstitial cells of Cajal. Am J Gastroenterol 97: 1828–1833

    Article  PubMed  Google Scholar 

  92. Jackson MW et al. (2004) Disruption of intestinal motility by a calcium channel-stimulating autoantibody in type 1 diabetes. Gastroenterology 126: 819–828

    Article  CAS  PubMed  Google Scholar 

  93. Sigurdsson L et al. (1997) Postviral gastroparesis: presentation, treatment, and outcome. J Pediatr 131: 751–754

    Article  CAS  PubMed  Google Scholar 

  94. Pande H et al. (2002) Inflammatory causes of gastroparesis: report of five cases. Dig Dis Sci 47: 2664–2668

    Article  CAS  PubMed  Google Scholar 

  95. De Giorgio R et al. (2000) Idiopathic myenteric ganglionitis underlying intractable vomiting in a young adult. Eur J Gastroenterol Hepatol 12: 613–616

    Article  CAS  PubMed  Google Scholar 

  96. Ward SM et al. (2004) Role of interstitial cells of Cajal in neural control of gastrointestinal smooth muscles. Neurogastroenterol Motil 16 (Suppl 1): 112–117

    Article  PubMed  Google Scholar 

  97. Strege PR et al. (2003) Sodium current in human intestinal interstitial cells of Cajal. Am J Physiol Gastrointest Liver Physiol 285: G1111–G1121

    Article  CAS  PubMed  Google Scholar 

  98. Hirst GD and Edwards FR (2004) Role of interstitial cells of Cajal in the control of gastric motility. J Pharmacol Sci 96: 1–10

    Article  CAS  PubMed  Google Scholar 

  99. Holzer P (2002) Sensory neuron responses to mucosal noxae in the upper gut: relevance to mucosal integrity and gastrointestinal pain. Neurogastroenterol Motil 14: 459–475

    Article  CAS  PubMed  Google Scholar 

  100. Berthoud HR et al. (2004) Neuroanatomy of extrinsic afferents supplying the gastrointestinal tract. Neurogastroenterol Motil 16 (Suppl 1): 28–33

    Article  PubMed  Google Scholar 

  101. Grundy D (2006) Signalling the state of the digestive tract. Auton Neurosci 125: 76–80

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported, in part, by grants NIDDK U01 DK073983-01 (PJ Pasricha) and DK DK68055 (G Farrugia). Figure 1 was kindly supplied by H Mashimo, and Figures 5 and 6 were kindly supplied by N Zarate.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj J Pasricha.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vittal, H., Farrugia, G., Gomez, G. et al. Mechanisms of Disease: the pathological basis of gastroparesis—a review of experimental and clinical studies. Nat Rev Gastroenterol Hepatol 4, 336–346 (2007). https://doi.org/10.1038/ncpgasthep0838

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpgasthep0838

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing