Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Clinical utility of measurements of insulin-like growth factor 1

Abstract

Plasma insulin-like growth factor 1 (IGF-I) concentrations are regulated by genetic factors, nutrient intake, growth hormone (GH) and other hormones such as T4, cortisol and sex steroids. The accuracy of IGF-I measurement in diagnosing GH deficiency or excess depends, in part, on the relative contributions of each of these variables. Since their respective influence may vary widely between individuals, the establishment of well-defined normal ranges is necessary, which requires adequate numbers of normal individuals, in order for IGF-I measurements to have maximum utility. In states of GH deficiency, the influence of these non-GH-related factors predominates. Although IGF-I levels have utility as a screening test in children and young adults, they cannot be used as a stand-alone test for the diagnosis of GH deficiency. By contrast, in acromegaly, GH is the predominant determinant of IGF-I levels and, therefore, measurement of IGF-I is a very useful diagnostic test. In acromegaly, IGF-I levels are useful for assessing the relative degree of GH excess, because changes in IGF-I correlate with changes in symptoms and soft-tissue growth. IGF-I is also very useful in monitoring the symptomatic response to therapy.

Key Points

  • Insulin-like growth factor 1 (IGF-I) is a useful screening test in children and young adults with growth-hormone deficiency

  • IGF-I is not a stand-alone diagnostic test for growth-hormone deficiency in adults, and a confirmatory growth-hormone-stimulation test is required

  • IGF-I can be used as a stand-alone diagnostic test for acromegaly

  • Measurement of IGF-I at the time of diagnosis in acromegaly provides useful information on disease severity

  • Monitoring the change in IGF-I levels during treatment of acromegaly provides a good index of the symptomatic response

  • Growth hormone levels after glucose suppression, and IGF-I levels, are useful predictors of treatment success in acromegaly that correlate with long-term outcome

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram of insulin, growth hormone and insulin-like growth factor 1 regulation85

Similar content being viewed by others

References

  1. Jones JI and Clemmons DR (1995) Insulin-like growth factors and their binding proteins: biological actions. Endocr Rev 16: 3–34

    CAS  PubMed  Google Scholar 

  2. Yakar S et al. (1999) Normal growth and development in the absence of hepatic insulin-like growth factor I. Proc Natl Acad Sci USA 96: 7324–7329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Thissen JP et al. (1996) Use of insulin-like growth factor-I (IGF-I) and IGF-binding protein-3 in the diagnosis of acromegaly and growth hormone deficiency in adults. Growth Regul 6: 222–229

    CAS  PubMed  Google Scholar 

  4. Clemmons DR et al. (1981) Reduction of plasma immunoreactive somatomedin C during fasting in humans. J Clin Endocrinol Metab 53: 1247–1250

    Article  CAS  PubMed  Google Scholar 

  5. Isley WL et al. (1983) Dietary components that regulate serum somatomedin-C concentrations in humans. J Clin Invest 71: 175–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Roberts CT Jr et al. (1987) Molecular cloning of rat insulin-like growth factor I complementary deoxyribonucleic acids: differential messenger ribonucleic acid processing and regulation by growth hormone in extrahepatic tissues. Mol Endocrinol 1: 243–248

    Article  CAS  PubMed  Google Scholar 

  7. Underwood LE et al. (1994) Hormonal and nutritional regulation of IGF-I and its binding proteins. Horm Res 42: 145–151

    Article  CAS  PubMed  Google Scholar 

  8. Ho KY et al. (1988) Fasting enhances growth hormone secretion and amplifies the complex rhythms of growth hormone secretion in man. J Clin Invest 81: 968–975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Snyder DK et al. (1989) Dietary carbohydrate content determines responsiveness to growth hormone in energy-restricted humans. J Clin Endocrinol Metab 69: 745–752

    Article  CAS  PubMed  Google Scholar 

  10. Hanaire-Broutin H et al. (1996) Effect of intraperitoneal insulin delivery on growth hormone binding protein, insulin-like growth factor (IGF)-I, and IGF-binding protein-3 in IDDM. Diabetologia 39: 1498–1504

    Article  CAS  PubMed  Google Scholar 

  11. Clemmons DR and Van Wyk JJ (1984) Factors controlling blood concentration of somatomedin C. Clin Endocrinol Metab 13: 113–143

    Article  CAS  PubMed  Google Scholar 

  12. Juul A (2003) Serum levels of insulin-like growth factor I and its binding proteins in health and disease. Growth Horm IGF Res 13: 113–170

    Article  CAS  PubMed  Google Scholar 

  13. Leung KC (2004) Estrogen regulation of growth hormone action. Endocr Rev 25: 693–721

    Article  CAS  PubMed  Google Scholar 

  14. Miell JP et al. (1993) Effects of hypothyroidism and hyperthyroidism on insulin-like growth factors (IGFs) and growth hormone- and IGF-binding proteins. J Clin Endocrinol Metab 76: 950–955

    CAS  PubMed  Google Scholar 

  15. Juul A et al. (1995) Serum levels of insulin-like growth factor (IGF)-binding protein-3 (IGFBP-3) in healthy infants, children, and adolescents: the relation to IGF-I, IGF-II, IGFBP-1, IGFBP-2, age, sex, body mass index, and pubertal maturation. J Clin Endocrinol Metab 80: 2534–2542

    CAS  PubMed  Google Scholar 

  16. Juul A et al. (1994) The ratio between serum levels of insulin-like growth factor (IGF)-I and the IGF binding proteins (IGFBP-1, 2 and 3) decreases with age in healthy adults and is increased in acromegalic patients. Clin Endocrinol (Oxf) 41: 85–93

    Article  CAS  Google Scholar 

  17. Hong Y et al. (1996) Quantitative genetic analyses of insulin-like growth factor I (IGF-I), IGF-binding protein-1, and insulin levels in middle-aged and elderly twins. J Clin Endocrinol Metab 81: 1791–1797

    CAS  PubMed  Google Scholar 

  18. Schneid H et al. (1990) Insulin-like growth factor-I gene analysis in subjects with constitutionally variant stature. Pediatr Res 27: 488–491

    Article  CAS  PubMed  Google Scholar 

  19. Vaessen N et al. (2001) A polymorphism in the gene for IGF-I: functional properties and risk for type 2 diabetes and myocardial infarction. Diabetes 3: 637–642

    Article  Google Scholar 

  20. Arends N et al. (2002) Polymorphism in the IGF-I gene: clinical relevance for short children born small for gestational age (SGA). J Clin Endocrinol Metab 87: 2720–2724

    Article  CAS  PubMed  Google Scholar 

  21. Rosen CJ et al. (1998) Association between serum insulin growth factor-I (IGF-I) and a simple sequence repeat in IGF-I gene: implications for genetic studies of bone mineral density. J Clin Endocrinol Metab 83: 1606–1610

    Google Scholar 

  22. Frayling TM et al. (2002) A putative functional polymorphism in the IGF-I gene. Association studies with type 2 diabetes, adult height, glucose tolerance, and fetal growth in U.K. populations. Diabetes 51: 2313–2316

    Article  CAS  PubMed  Google Scholar 

  23. Miyao M et al. (1998) Polymorphism of insulin-like growth factor I gene and bone mineral density and the insulin-like growth factor I gene locus. Calcif Tissue Int 63: 306–311

    Article  CAS  PubMed  Google Scholar 

  24. Blum WF et al. (1993) Serum levels of insulin-like growth factor I (IGF-I) and IGF binding protein 3 reflect spontaneous growth hormone secretion. J Clin Endocrinol Metab 76: 1610–1616

    CAS  PubMed  Google Scholar 

  25. Baxter RC (1990) Circulating levels and molecular distribution of the acid-labile α subunit of the high molecular weight insulin-like growth factor-binding protein complex. J Clin Endocrinol Metab 70: 1347–1353

    Article  CAS  PubMed  Google Scholar 

  26. Clemmons DR et al. (1991) Variables controlling the secretion of insulin-like growth factor binding protein-2 in normal human subjects. J Clin Endocrinol Metab 73: 727–733

    Article  CAS  PubMed  Google Scholar 

  27. Unterman TG (1993) Insulin-like growth factor binding protein-1: identification, purification, and regulation in fetal and adult life. Adv Exp Med Biol 343: 215–226

    Article  CAS  PubMed  Google Scholar 

  28. Rosenfeld RG et al. (1986) Insulin-like growth factors I and II in evaluation of growth retardation. J Pediatr 109: 428–433

    Article  CAS  PubMed  Google Scholar 

  29. Span JP et al. (1999) Plasma IGF-I is a useful marker of growth hormone deficiency in adults. J Endocrinol Invest 22: 446–450

    Article  CAS  PubMed  Google Scholar 

  30. Aimaretti G et al. (1998) Usefulness of IGF-I assay for the diagnosis of GH deficiency in adults. J Endocrinol Invest 21: 506–511

    Article  CAS  PubMed  Google Scholar 

  31. Rikken B et al. (1998) Plasma levels of insulin-like growth factor IGF-I, IGF-II and IGF binding protein 3 in the evaluation of childhood growth hormone deficiency. Horm Res 50: 166–176

    CAS  PubMed  Google Scholar 

  32. Thissen JP et al. (1994) Nutritional regulation of the insulin-like growth factors. Endocr Rev 15: 80–101

    CAS  PubMed  Google Scholar 

  33. Lissett CA et al. (2003) Determinants of IGF-I status in a large cohort of growth hormone-deficient (GHD) subjects: the role of timing of onset of GHD. Clin Endocrinol 59: 773–778

    Article  CAS  Google Scholar 

  34. Janssen YJ et al. (1997) A low starting dose of genotropin in growth hormone-deficient adults. J Clin Endocrinol Metab 82: 129–135

    CAS  PubMed  Google Scholar 

  35. Attanasio AF et al. (2002) Body composition, IGF-I and IGFBP-3 concentrations as outcome measures in severely GH-deficient (GHD) patients after childhood GH treatment: a comparison with adult onset GHD patients. J Clin Endocrinol Metab 87: 3368–3372

    Article  CAS  PubMed  Google Scholar 

  36. Hartman ML et al. (2002) Which patients do not require a GH stimulation test for the diagnosis of adult GH deficiency? J Clin Endocrinol Metab 87: 477–485

    Article  CAS  PubMed  Google Scholar 

  37. Wikland KA et al. (2000) Validated multivariate models predicting the growth response to GH treatment in individual short children with a broad range in GH secretion capacities. Pediatr Res 48: 475–484

    Article  CAS  PubMed  Google Scholar 

  38. Abs R et al. (1999) GH replacement in 1,034 growth hormone deficient hypopituitary adults: demographic and clinical characteristics, dosing and safety. Clin Endocrinol (Oxf) 50: 703–713

    Article  CAS  Google Scholar 

  39. Chipman JJ et al. (1997) The safety profile of GH replacement therapy in adults. Clin Endocrinol (Oxf) 46: 473–481

    Article  CAS  Google Scholar 

  40. Clemmons DR et al. (1979) Evaluation of acromegaly by radioimmunoassay of somatomedin-C. N Engl J Med 301: 1138–1142

    Article  CAS  PubMed  Google Scholar 

  41. Stoffel-Wagner B et al. (1997) A comparison of different methods for diagnosing acromegaly. Clin Endocrinol (Oxf) 46: 531–537

    Article  CAS  Google Scholar 

  42. Trainer PJ et al. (2000) Treatment of acromegaly with the growth hormone-receptor antagonist pegvisomant. N Engl J Med 342: 1171–1177

    Article  CAS  PubMed  Google Scholar 

  43. Rieu M et al. (1982) The importance of insulin-like growth factor (somatomedin) measurements in the diagnosis and surveillance of acromegaly. J Clin Endocrinol Metab 55: 147–153

    Article  CAS  PubMed  Google Scholar 

  44. Paramo C et al. (1997) Comparative study of insulin-like growth factor-I (IGF-I) and IGF-binding protein-3 (IGFBP-3) level and IGF-I/IGFBP-3 ratio measurements and their relationship with an index of clinical activity in the management of patients with acromegaly. Metabolism 46: 494–498

    Article  CAS  PubMed  Google Scholar 

  45. Arafah BM et al. (1987) Value of growth hormone dynamics and somatomedin C (insulin-like growth factor I) levels in predicting the long-term benefit after transsphenoidal surgery for acromegaly. J Lab Clin Med 109: 346–354

    CAS  PubMed  Google Scholar 

  46. Lindholm J et al. (1987) Investigation of the criteria for assessing the outcome of treatment in acromegaly. Clin Endocrinol (Oxf) 27: 553–562

    Article  CAS  Google Scholar 

  47. Giustina A et al. (2000) Criteria for cure of acromegaly: a consensus statement. J Clin Endocrinol Metab 85: 526–529

    CAS  PubMed  Google Scholar 

  48. Holdaway IM et al. (2004) Factors influencing mortality in acromegaly. J Clin Endocrinol Metab 89: 667–674

    Article  CAS  PubMed  Google Scholar 

  49. Swearingen B et al. (1998) Long-term mortality after transsphenoidal surgery and adjunctive therapy for acromegaly. J Clin Endocrinol Metab 83: 3419–3426

    CAS  PubMed  Google Scholar 

  50. Biermasz NR et al. (2004) Determinants of survival in treated acromegaly in a single center: predictive value of serial insulin-like growth factor I measurements. J Clin Endocrinol Metab 89: 2789–2796

    Article  CAS  PubMed  Google Scholar 

  51. Ayuk J et al. (2004) Growth hormone and pituitary radiotherapy, but not serum insulin-like growth factor-I concentrations, predict excess mortality in patients with acromegaly. J Clin Endocrinol Metab 89: 1613–1617

    Article  CAS  PubMed  Google Scholar 

  52. Skjaerbaek C et al. (1998) Differential changes in free and total insulin-like growth factor I after major, elective abdominal surgery: the possible role of insulin-like growth factor-binding protein-3 proteolysis. J Clin Endocrinol Metab 83: 2445–2449

    Article  CAS  PubMed  Google Scholar 

  53. Lang CH et al. (1996) Regulation of the insulin-like growth factor system by insulin in burn patients. J Clin Endocrinol Metab 81: 2474–2480

    CAS  PubMed  Google Scholar 

  54. Sermet-Gaudelus I et al. (2003) Insulin-like growth factor I correlates with lean body mass in cystic fibrosis patients. Arch Dis Child 88: 956–961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Congote LF (2005) Monitoring insulin-like growth factors in HIV infection and AIDS. Clin Chim Acta 361: 30–53

    Article  CAS  PubMed  Google Scholar 

  56. Waters DL et al. (2003) Serum sex hormones, IGF-1, and IGFBP3 exert a sexually dimorphic effect on lean body mass in aging. J Gerontol A Biol Sci Med Sci 58: 648–652

    Article  PubMed  Google Scholar 

  57. Ketelslegers JM et al. (1995) Nutritional regulation of insulin-like growth factor-I. Metabolism 44: 50–57

    Article  CAS  PubMed  Google Scholar 

  58. Pascal N et al. (2002) Serum concentrations of sex hormone binding globulin are elevated in kwashiorkor and anorexia nervosa but not in marasmus. Am J Clin Nutr 76: 239–244

    Article  CAS  PubMed  Google Scholar 

  59. Kratzsch J et al. (1995) Regulation of growth hormone (GH), insulin-like growth factor (IGF)I, IGF binding proteins -1, -2, -3 and GH binding protein during progression of liver cirrhosis. Exp Clin Endocrinol Diabetes 103: 285–291

    Article  CAS  PubMed  Google Scholar 

  60. Bereket A et al. (1995) Insulin-like growth factor binding protein-3 proteolysis in children with insulin-dependent diabetes mellitus: a possible role for insulin in the regulation of IGFBP-3 protease activity. J Clin Endocrinol Metab 80: 2282–2288

    CAS  PubMed  Google Scholar 

  61. Strasser-Vogel B et al. (1995) Insulin-like growth factor (IGF)-I and -II and IGF-binding proteins-1, -2, and -3 in children and adolescents with diabetes mellitus: correlation with metabolic control and height attainment. J Clin Endocrinol Metab 80: 1207–1213

    CAS  PubMed  Google Scholar 

  62. Wedrychowicz A et al. (2005) Insulin-like growth factor-1 and its binding proteins, IGFBP-1 and IGFBP-3, in adolescents with type-1 diabetes mellitus and microalbuminuria. Horm Res 63: 245–251

    CAS  PubMed  Google Scholar 

  63. Jehle PM et al. (1998) Serum levels of insulin-like growth factor system components and relationship to bone metabolism in Type 1 and Type 2 diabetes mellitus patients. J Endocrinol 159: 297–306

    Article  CAS  PubMed  Google Scholar 

  64. Clauson PG et al. (1998) Insulin-like growth factor-I and insulin-like growth factor binding protein-1 in a representative population of type 2 diabetic patients in Sweden. Scand J Clin Lab Invest 58: 353–360

    Article  CAS  PubMed  Google Scholar 

  65. Sandhu MS et al. (2002) Circulating concentrations of insulin-like growth factor-I and development of glucose intolerance: a prospective observational study. Lancet 359: 1740–1745

    Article  CAS  PubMed  Google Scholar 

  66. Yang SW and Yu JS (2000) Relationship of insulin-like growth factor-I, insulin-like growth factor binding protein-3, insulin, growth hormone in cord blood and maternal factors with birth height and birthweight. Pediatr Int 42: 31–36

    Article  CAS  PubMed  Google Scholar 

  67. Verkauskiene R et al. (2005) Smallness for gestational age is associated with persistent change in insulin-like growth factor I (IGF-I) and the ratio of IGF-I/IGF-binding protein-3 in adulthood. J Clin Endocrinol Metab 90: 5672–5676

    Article  CAS  PubMed  Google Scholar 

  68. Woods KA et al. (2002) The somatotropic axis in short children born small for gestational age: relation to insulin resistance. Pediatr Res 51: 76–80

    Article  CAS  PubMed  Google Scholar 

  69. Brabant G et al. (2003) Serum insulin-like growth factor I reference values for an automated chemiluminescence immunoassay system: results from a multicenter study. Horm Res 60: 53–60

    CAS  PubMed  Google Scholar 

  70. van den Beld AW et al. (2003) Serum insulin-like growth factor binding protein-2 levels as an indicator of functional ability in elderly men. Eur J Endocrinol 148: 627–634

    Article  CAS  PubMed  Google Scholar 

  71. Blackman MR et al. (2002) Growth hormone and sex steroid administration in healthy aged women and men: a randomized controlled trial. JAMA 288: 2282–2292

    Article  CAS  PubMed  Google Scholar 

  72. Heald A et al. (2005) Effects of hormone replacement therapy on insulin-like growth factor (IGF)-I, IGF-II and IGF binding protein (IGFBP)-1 to IGFBP-4: implications for cardiovascular risk. Gynecol Endocrinol 20: 176–182

    Article  CAS  PubMed  Google Scholar 

  73. Cook DM et al. (1999) Route of estrogen administration helps to determine growth hormone (GH) replacement dose in GH-deficient adults. J Clin Endocrinol Metab 84: 3956–3960

    CAS  PubMed  Google Scholar 

  74. Nasu M et al. (1997) Effect of natural menopause on serum levels of IGF-I and IGF-binding proteins: relationship with bone mineral density and lipid metabolism in perimenopausal women. Eur J Endocrinol 136: 608–616

    Article  CAS  PubMed  Google Scholar 

  75. Keenan BS et al. (1993) Androgen-stimulated pubertal growth: the effects of testosterone and dihydrotestosterone on growth hormone and insulin-like growth factor-I in the treatment of short stature and delayed puberty. J Clin Endocrinol Metab 76: 996–1001

    CAS  PubMed  Google Scholar 

  76. Soares-Welch C et al. (2005) Short-term testosterone supplementation does not activate GH and IGF-I production in postmenopausal women. Clin Endocrinol (Oxf) 63: 32–38

    Article  CAS  Google Scholar 

  77. Veldhuis JD et al. (2005) Testosterone supplementation in healthy older men drives GH and IGF-I secretion without potentiating peptidyl secretagogue efficacy. Eur J Endocrinol 153: 577–586

    Article  CAS  PubMed  Google Scholar 

  78. Veldhuis JD et al. (2005) Testosterone blunts feedback inhibition of growth hormone secretion by experimentally elevated insulin-like growth factor-I concentrations. J Clin Endocrinol Metab 90: 1613–1617

    Article  CAS  PubMed  Google Scholar 

  79. Veldhuis JD et al. (2005) Testosterone and estradiol regulate free insulin-like growth factor I (IGF-I), IGF binding protein 1 (IGFBP-1), and dimeric IGF-I/IGFBP-1 concentrations. J Clin Endocrinol Metab 90: 2941–2917

    Article  CAS  PubMed  Google Scholar 

  80. Bang P et al. (1993) Insulin-like growth factor (IGF) I and II and IGF binding protein (IGFBP) 1, 2 and 3 in serum from patients with Cushing's syndrome. Acta Endocrinol (Copenh) 128: 397–404

    Article  CAS  Google Scholar 

  81. Clemmons DR (2001) Commercial assays available for insulin-like growth factor I and their use in diagnosing growth hormone deficiency. Horm Res 55 (Suppl 2): 73–79

    CAS  PubMed  Google Scholar 

  82. Blum WF and Breier BH (1994) Radioimmunoassays for IGFs and IGFBPs. Growth Regul 4 (Suppl 1): 11–19

    CAS  PubMed  Google Scholar 

  83. Milani D et al. (2004) Variability and reliability of single serum IGF-I measurements: impact on determining predictability of risk ratios in disease development. J Clin Endocrinol Metab 89: 2271–2274

    Article  CAS  PubMed  Google Scholar 

  84. Kenyon C (2005) The plasticity of aging: insights from long-lived mutants. Cell 120: 449–460

    Article  CAS  PubMed  Google Scholar 

  85. Clemmons DR (2004) The relative roles of growth hormone and IGF-1 in controlling insulin sensitivity. J Clin Invest 113: 25–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Freda PU et al. (2004) Significance of “abnormal” nadir growth hormone levels after oral glucose in postoperative patients with acromegaly in remission with normal insulin-like growth factor-I levels. J Clin Endocrinol Metab 89: 495–500

    Article  CAS  PubMed  Google Scholar 

  87. Dimaraki EV et al. (2002) Acromegaly with apparently normal GH secretion: implications for diagnosis and follow-up. J Clin Endocrinol Metab 87: 3537–3542

    Article  CAS  PubMed  Google Scholar 

  88. Puder JJ et al. (2005) Relationship between disease-related morbidity and biochemical markers of activity in patients with acromegaly. J Clin Endocrinol Metab 90: 1972–1978

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks Ms Laura Lindsey for her help in preparing the manuscript. This work was supported by a grant (HL56580) from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David R Clemmons.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clemmons, D. Clinical utility of measurements of insulin-like growth factor 1. Nat Rev Endocrinol 2, 436–446 (2006). https://doi.org/10.1038/ncpendmet0244

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpendmet0244

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing