Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

NuMA-related LIN-5, ASPM-1, calmodulin and dynein promote meiotic spindle rotation independently of cortical LIN-5/GPR/Gα

Abstract

The spindle apparatus dictates the plane of cell cleavage, which is critical in the choice between symmetric or asymmetric division. Spindle positioning is controlled by an evolutionarily conserved pathway, which involves LIN-5/GPR-1/2/Gα in Caenorhabditis elegans, Mud/Pins/Gα in Drosophila and NuMA/LGN/Gα in humans1. GPR-1/2 and Gα localize LIN-5 to the cell cortex, which engages dynein and controls the cleavage plane during early mitotic divisions in C. elegans2,3,4,5,6. Here we identify ASPM-1 (abnormal spindle-like, microcephaly-associated) as a novel LIN-5 binding partner. ASPM-1, together with calmodulin (CMD-1), promotes meiotic spindle organization and the accumulation of LIN-5 at meiotic and mitotic spindle poles. Spindle rotation during maternal meiosis is independent of GPR-1/2 and Gα, yet requires LIN-5, ASPM-1, CMD-1 and dynein. Our data support the existence of two distinct LIN-5 complexes that determine localized dynein function: LIN-5/GPR-1/2/Gα at the cortex, and LIN-5/ASPM-1/CMD-1 at spindle poles. These functional interactions may be conserved in mammals, with implications for primary microcephaly.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: LIN-5 and CMD-1 associate with ASPM-1.
Figure 2: Localizations of LIN-5 and DHC-1 dynein heavy chain to meiotic spindle poles are dependent on ASPM-1 and CMD-1.
Figure 3: Localization of LIN-5 at the spindle poles, but not at the cortex, is dependent on ASPM-1 and CMD-1.
Figure 4: ASPM-1 is not required for cortical pulling forces and spindle positioning in early mitotic divisions.
Figure 5: LIN-5, ASPM-1, CMD-1 and DHC-1 are required for spindle rotation during meiosis.

Similar content being viewed by others

References

  1. Galli, M. & van den Heuvel, S. Determination of the cleavage plane in early C. elegans embryos. Annu. Rev. Genet. 42, 389–411 (2008).

    Article  CAS  Google Scholar 

  2. Colombo, K. et al. Translation of polarity cues into asymmetric spindle positioning in Caenorhabditis elegans embryos. Science 300, 1957–1961 (2003).

    Article  CAS  Google Scholar 

  3. Couwenbergs, C. et al. Heterotrimeric G protein signaling functions with dynein to promote spindle positioning in C. elegans. J. Cell Biol. 179, 15–22 (2007).

    Article  CAS  Google Scholar 

  4. Gotta, M., Dong, Y., Peterson, Y. K., Lanier, S. M. & Ahringer, J. Asymmetrically distributed C. elegans homologs of AGS3/PINS control spindle position in the early embryo. Curr. Biol. 13, 1029–1037 (2003).

    Article  CAS  Google Scholar 

  5. Nguyen-Ngoc, T., Afshar, K. & Gönczy, P. Coupling of cortical dynein and Gα proteins mediates spindle positioning in Caenorhabditis elegans. Nature Cell Biol. 9, 1294–1302 (2007).

    Article  CAS  Google Scholar 

  6. Srinivasan, D. G., Fisk, R. M., Xu, H. & van den Heuvel, S. A complex of LIN-5 and GPR proteins regulates G protein signaling and spindle function in C. elegans. Genes Dev. 17, 1225–1239 (2003).

    Article  CAS  Google Scholar 

  7. Albertson, D. G. & Thomson, J. N. Segregation of holocentric chromosomes at meiosis in the nematode, Caenorhabditis elegans. Chromosome Res. 1, 15–26 (1993).

    Article  CAS  Google Scholar 

  8. Afshar, K. et al. RIC-8 is required for GPR-1/2-dependent Gα function during asymmetric division of C. elegans embryos. Cell 119, 219–230 (2004).

    Article  CAS  Google Scholar 

  9. Lorson, M. A., Horvitz, H. R. & van den Heuvel, S. LIN-5 is a novel component of the spindle apparatus required for chromosome segregation and cleavage plane specification in Caenorhabditis elegans. J. Cell Biol. 148, 73–86 (2000).

    Article  CAS  Google Scholar 

  10. Bond, J. et al. ASPM is a major determinant of cerebral cortical size. Nature Genet. 32, 316–320 (2002).

    Article  CAS  Google Scholar 

  11. Fish, J. L., Kosodo, Y., Enard, W., Pääbo, S. & Huttner, W. B. Aspm specifically maintains symmetric proliferative divisions of neuroepithelial cells. Proc. Natl Acad. Sci. USA 103, 10438–10443 (2006).

    Article  CAS  Google Scholar 

  12. Fisk Green, R., Lorson, M., Walhout, A. J., Vidal, M. & van den Heuvel, S. Identification of critical domains and putative partners for the Caenorhabditis elegans spindle component LIN-5. Mol. Genet. Genomics 271, 532–544 (2004).

    Article  CAS  Google Scholar 

  13. Li, S. et al. A map of the interactome network of the metazoan C. elegans. Science 303, 540–543 (2004).

    Article  CAS  Google Scholar 

  14. Park, D. H. & Rose, L. S. Dynamic localization of LIN-5 and GPR-1/2 to cortical force generation domains during spindle positioning. Dev. Biol. 315, 42–54 (2008).

    Article  CAS  Google Scholar 

  15. Clark-Maguire, S. & Mains, P. E. Localization of the mei-1 gene product of Caenorhaditis elegans, a meiotic-specific spindle component. J. Cell Biol. 126, 199–209 (1994).

    Article  CAS  Google Scholar 

  16. Yang, H. Y., Mains, P. E. & McNally, F. J. Kinesin-1 mediates translocation of the meiotic spindle to the oocyte cortex through KCA-1, a novel cargo adapter. J. Cell Biol. 169, 447–457 (2005).

    Article  CAS  Google Scholar 

  17. Yang, H. Y., McNally, K. & McNally, F. J. MEI-1/katanin is required for translocation of the meiosis I spindle to the oocyte cortex in C. elegans. Dev. Biol. 260, 245–259 (2003).

    Article  CAS  Google Scholar 

  18. O'Rourke, S. M., Dorfman, M. D., Carter, J. C. & Bowerman, B. Dynein modifiers in C. elegans: light chains suppress conditional heavy chain mutants. PLoS Genet. 3, e128 (2007).

    Article  Google Scholar 

  19. Hamill, D. R., Severson, A. F., Carter, J. C. & Bowerman, B. Centrosome maturation and mitotic spindle assembly in C. elegans require SPD-5, a protein with multiple coiled-coil domains. Dev. Cell 3, 673–684 (2002).

    Article  CAS  Google Scholar 

  20. Gassmann, R. et al. A new mechanism controlling kinetochore–microtubule interactions revealed by comparison of two dynein-targeting components: SPDL-1 and the Rod/Zwilch/Zw10 complex. Genes Dev. 22, 2385–2399 (2008).

    Article  CAS  Google Scholar 

  21. do Carmo Avides, M. & Glover, D. M. Abnormal spindle protein, Asp, and the integrity of mitotic centrosomal microtubule organizing centers. Science 283, 1733–1735 (1999).

    Article  CAS  Google Scholar 

  22. Wakefield, J. G., Bonaccorsi, S. & Gatti, M. The Drosophila protein asp is involved in microtubule organization during spindle formation and cytokinesis. J. Cell Biol. 153, 637–648 (2001).

    Article  CAS  Google Scholar 

  23. Gonzalez, C. et al. Mutations at the asp locus of Drosophila lead to multiple free centrosomes in syncytial embryos, but restrict centrosome duplication in larval neuroblasts. J. Cell Sci. 96, 605–616 (1990).

    PubMed  Google Scholar 

  24. Heald, R. et al. Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts. Nature 382, 420–425 (1996).

    Article  CAS  Google Scholar 

  25. Merdes, A., Heald, R., Samejima, K., Earnshaw, W. C. & Cleveland, D. W. Formation of spindle poles by dynein/dynactin-dependent transport of NuMA. J. Cell Biol. 149, 851–862 (2000).

    Article  CAS  Google Scholar 

  26. Bowman, S. K., Neumuller, R. A., Novatchkova, M., Du, Q. & Knoblich, J. A. The Drosophila NuMA Homolog Mud regulates spindle orientation in asymmetric cell division. Dev. Cell 10, 731–742 (2006).

    Article  CAS  Google Scholar 

  27. Du, Q. & Macara, I. G. Mammalian Pins is a conformational switch that links NuMA to heterotrimeric G proteins. Cell 119, 503–516 (2004).

    Article  CAS  Google Scholar 

  28. Izumi, Y., Ohta, N., Hisata, K., Raabe, T. & Matsuzaki, F. Drosophila Pins-binding protein Mud regulates spindle-polarity coupling and centrosome organization. Nature Cell Biol. 8, 586–593 (2006).

    Article  CAS  Google Scholar 

  29. Siller, K. H., Cabernard, C. & Doe, C. Q. The NuMA-related Mud protein binds Pins and regulates spindle orientation in Drosophila neuroblasts. Nature Cell Biol. 8, 594–600 (2006).

    Article  CAS  Google Scholar 

  30. Mains, P. E., Kemphues, K. J., Sprunger, S. A., Sulston, I. A. & Wood, W. B. Mutations affecting the meiotic and mitotic divisions of the early Caenorhabditis elegans embryo. Genetics 126, 593–605 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Konno, D. et al. Neuroepithelial progenitors undergo LGN-dependent planar divisions to maintain self-renewability during mammalian neurogenesis. Nature Cell Biol. 10, 93–101 (2008).

    Article  CAS  Google Scholar 

  32. Morin, X., Jaouen, F. & Durbec, P. Control of planar divisions by the G-protein regulator LGN maintains progenitors in the chick neuroepithelium. Nature Neurosci. 10, 1440–1448 (2007).

    Article  CAS  Google Scholar 

  33. Sanada, K. & Tsai, L. H. G protein βγ subunits and AGS3 control spindle orientation and asymmetric cell fate of cerebral cortical progenitors. Cell 122, 119–131 (2005).

    Article  CAS  Google Scholar 

  34. Boxem, M. et al. A protein domain-based interactome network for C. elegans early embryogenesis. Cell 134, 534–545 (2008).

    Article  CAS  Google Scholar 

  35. Grill, S. W., Howard, J., Schäffer, E., Stelzer, E. H. & Hyman, A. A. The distribution of active force generators controls mitotic spindle position. Science 301, 518–521 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Steve Gygi and Ross Tomaino (Taplin Biological Mass Spectrometry, Harvard Medical School) for analysis of peptides by mass spectrometry (HMS), to Sean O'Rourke and Bruce Bowerman for the GFP–DHC-1 strain EU1561, to Inge The for assistance with ASPM-1 antibody production, Kristiaan de Vries for scoring embryonic lethality, and the Caenorhabditis Genetics Center (National Institutes of Health, National Center for Research Resources) for providing strains. We thank Adri Thomas and Marjolein Wildwater for critically reading the manuscript. This work was supported in part by National Institutes of Health grant GM57990 to S.v.d.H, Swiss National Science Foundation grant 3100A0-102087 to P.G., and Marie Curie International Reintegration grant MIRG-CT-2007-046458 to M.B.

Author information

Authors and Affiliations

Authors

Contributions

M.v.d.V. was primarily responsible for the experiments, data analysis and manuscript writing. C.B. performed IP-western experiments and fusion protein purification. A.P. contributed in the initial phase of the project. T.N-N. and P.G. performed spindle severing assays. M.B. performed Y2H experiments with support from M.V. S.v.d.H. contributed to experimental design, supervision and manuscript writing.

Corresponding author

Correspondence to Sander van den Heuvel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1852 kb)

Supplementary Information

Supplementary Movie 1 (MOV 1176 kb)

Supplementary Information

Supplementary Movie 2 (MOV 1418 kb)

Supplementary Information

Supplementary Movie 3 (MOV 1521 kb)

Supplementary Information

Supplementary Movie 4 (MOV 412 kb)

Supplementary Information

Supplementary Movie 5 (MOV 765 kb)

Supplementary Information

Supplementary Movie 6 (MOV 1322 kb)

Supplementary Information

Supplementary Movie 7 (MOV 2376 kb)

Supplementary Information

Supplementary Movie 8 (MOV 2162 kb)

Supplementary Information

Supplementary Movie 9 (MOV 640 kb)

Supplementary Information

Supplementary Movie 10 (MOV 2114 kb)

Supplementary Information

Supplementary Movie 11 (MOV 144 kb)

Supplementary Information

Supplementary Movie 12 (MOV 184 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Voet, M., Berends, C., Perreault, A. et al. NuMA-related LIN-5, ASPM-1, calmodulin and dynein promote meiotic spindle rotation independently of cortical LIN-5/GPR/Gα. Nat Cell Biol 11, 269–277 (2009). https://doi.org/10.1038/ncb1834

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1834

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing