Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Maximal chromosome compaction occurs by axial shortening in anaphase and depends on Aurora kinase

Abstract

Eukaryotic cells must first compact their chromosomes before faithfully segregating them during cell division. Failure to do so can lead to segregation defects with pathological consequences, such as aneuploidy and cancer1,2. Duplicated interphase chromosomes are, therefore, reorganized into tight rods before being separated and directed to the newly forming daughter cells3. This vital reorganization of chromatin remains poorly understood. To address the dynamics of mitotic condensation of single chromosomes in intact cells, we developed quantitative assays based on confocal time-lapse microscopy of live mammalian cells stably expressing fluorescently tagged core histones. Surprisingly, maximal compaction was not reached in metaphase, but in late anaphase, after sister chromatid segregation. We show that anaphase compaction proceeds by a mechanism of axial shortening of the chromatid arms from telomere to centromere. Chromatid axial shortening was not affected in condensin-depleted cells, but depended instead on dynamic microtubules and Aurora kinase. Acute perturbation of this compaction resulted in failure to rescue segregation defects and in multilobed daughter nuclei, suggesting functions in chromosome segregation and nuclear architecture.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Large-scale chromatin compaction in late anaphase.
Figure 2: Anaphase chromosome compaction by chromatid axial shortening.
Figure 3: Anaphase chromatid arm shortening requires dynamic microtubules and active Aurora B.
Figure 4: Midspindle localization of Aurora B in early anaphase requires dynamic microtubules.
Figure 5: Resolution of segregation defects in condensin-depleted cells depends on dynamic anaphase microtubules.

Similar content being viewed by others

References

  1. Nasmyth, K. Segregating sister genomes: the molecular biology of chromosome separation. Science 297, 559–565 (2002).

    Article  CAS  Google Scholar 

  2. Jallepalli, P. V. & Lengauer, C. Chromosome segregation and cancer: cutting through the mystery. Nature Rev. Cancer 1, 109–117 (2001).

    Article  CAS  Google Scholar 

  3. Swedlow, J. R. & Hirano, T. The making of the mitotic chromosome: modern insights into classical questions. Mol. Cell 11, 557–569 (2003).

    Article  CAS  Google Scholar 

  4. Swedlow, J. R., Sedat, J. W. & Agard, D. A. Multiple chromosomal populations of topoisomerase II detected in vivo by time-lapse, three-dimensional wide-field microscopy. Cell 73, 97–108 (1993).

    Article  CAS  Google Scholar 

  5. Belmont, A. S., Braunfeld, M. B., Sedat, J. W. & Agard, D. A. Large-scale chromatin structural domains within mitotic and interphase chromosomes in vivo and in vitro. Chromosoma 98, 129–143 (1989).

    Article  CAS  Google Scholar 

  6. Hiraoka, Y., Minden, J. S., Swedlow, J. R., Sedat, J. W. & Agard, D. A. Focal points for chromosome condensation and decondensation revealed by three-dimensional in vivo time-lapse microscopy. Nature 342, 293–296 (1989).

    Article  CAS  Google Scholar 

  7. Manders, E. M. et al. Four-dimensional imaging of chromatin dynamics during the assembly of the interphase nucleus. Chromosome Res. 11, 537–547 (2003).

    Article  CAS  Google Scholar 

  8. Beaudouin, J., Gerlich, D., Daigle, N., Eils, R. & Ellenberg, J. Nuclear envelope breakdown proceeds by microtubule-induced tearing of the lamina. Cell 108, 83–96 (2002).

    Article  CAS  Google Scholar 

  9. Gerlich, D., Hirota, T., Koch, B., Peters, J. M. & Ellenberg, J. Condensin I stabilizes chromosomes mechanically through a dynamic interaction in live cells. Curr. Biol. 16, 333–344 (2006).

    Article  CAS  Google Scholar 

  10. D'Amours, D., Stegmeier, F. & Amon, A. Cdc14 and condensin control the dissolution of cohesin-independent chromosome linkages at repeated DNA. Cell 117, 455–469 (2004).

    Article  CAS  Google Scholar 

  11. Lavoie, B. D., Hogan, E. & Koshland, D. In vivo requirements for rDNA chromosome condensation reveal two cell-cycle-regulated pathways for mitotic chromosome folding. Genes Dev. 18, 76–87 (2004).

    Article  CAS  Google Scholar 

  12. Sullivan, M., Higuchi, T., Katis, V. L. & Uhlmann, F. Cdc14 phosphatase induces rDNA condensation and resolves cohesin-independent cohesion during budding yeast anaphase. Cell 117, 471–482 (2004).

    Article  CAS  Google Scholar 

  13. Machin, F., Torres-Rosell, J., Jarmuz, A. & Aragon, L. Spindle-independent condensation-mediated segregation of yeast ribosomal DNA in late anaphase. J. Cell Biol. 168, 209–219 (2005).

    Article  CAS  Google Scholar 

  14. Hauf, S. et al. The small molecule Hesperadin reveals a role for Aurora B in correcting kinetochore-microtubule attachment and in maintaining the spindle assembly checkpoint. J. Cell Biol. 161, 281–294 (2003).

    Article  CAS  Google Scholar 

  15. Ditchfield, C. et al. Aurora B couples chromosome alignment with anaphase by targeting BubR1, Mad2, and Cenp-E to kinetochores. J. Cell Biol. 161, 267–280 (2003).

    Article  CAS  Google Scholar 

  16. Bach, S. et al. Roscovitine targets, protein kinases and pyridoxal kinase. J. Biol. Chem. 280, 31208–31219 (2005).

    Article  CAS  Google Scholar 

  17. Vagnarelli, P. et al. Condensin and Repo-Man-PP1 co-operate in the regulation of chromosome architecture during mitosis. Nature Cell Biol. 8, 1133–1142 (2006).

    Article  CAS  Google Scholar 

  18. Neumann, B. et al. High-throughput RNAi screening by time-lapse imaging of live human cells. Nature Methods 3, 385–390 (2006).

    Article  CAS  Google Scholar 

  19. Mora-Bermudez, F. & Ellenberg, J. Measuring structural dynamics of chromosomes in living cells by fluorescence microscopy. Methods 41, 158–167 (2007).

    Article  CAS  Google Scholar 

  20. Ducat, D. & Zheng, Y. Aurora kinases in spindle assembly and chromosome segregation. Exp. Cell Res. 301, 60–67 (2004).

    Article  CAS  Google Scholar 

  21. Zhai, Y., Kronebusch, P. J. & Borisy, G. G. Kinetochore microtubule dynamics and the metaphase-anaphase transition. J. Cell Biol. 131, 721–734 (1995).

    Article  CAS  Google Scholar 

  22. Levesque, A. A. & Compton, D. A. The chromokinesin Kid is necessary for chromosome arm orientation and oscillation, but not congression, on mitotic spindles. J. Cell Biol. 154, 1135–1146 (2001).

    Article  CAS  Google Scholar 

  23. Ganem, N. J., Upton, K. & Compton, D. A. Efficient mitosis in human cells lacking poleward microtubule flux. Curr. Biol. 15, 1827–1832 (2005).

    Article  CAS  Google Scholar 

  24. Spector, D. L. The dynamics of chromosome organization and gene regulation. Annu. Rev. Biochem. 72, 573–608 (2003).

    Article  CAS  Google Scholar 

  25. Shaklai, S., Amariglio, N., Gideon, R. & Simon, A. Gene silencing at the nuclear periphery. FEBS J. 274, 1383–1392 (2007).

    Article  CAS  Google Scholar 

  26. Prasanth, K. V., Sacco-Bubulya, P. A., Prasanth, S. G. & Spector, D. L. Sequential entry of components of the gene expression machinery into daughter nuclei. Mol. Biol. Cell 14, 1043–1057 (2003).

    Article  CAS  Google Scholar 

  27. Bhat, M. A., Philp, A. V., Glover, D. M. & Bellen, H. J. Chromatid segregation at anaphase requires the barren product, a novel chromosome-associated protein that interacts with Topoisomerase II. Cell 87, 1103–1114 (1996).

    Article  Google Scholar 

  28. Hagstrom, K. A., Holmes, V. F., Cozzarelli, N. R. & Meyer, B. J. C. elegans condensin promotes mitotic chromosome architecture, centromere organization, and sister chromatid segregation during mitosis and meiosis. Genes Dev. 16, 729–742 (2002).

    Article  CAS  Google Scholar 

  29. Norden, C. et al. The NoCut pathway links completion of cytokinesis to spindle midzone function to prevent chromosome breakage. Cell 125, 85–98 (2006).

    Article  CAS  Google Scholar 

  30. Cimini, D., Fioravanti, D., Salmon, E. D. & Degrassi, F. Merotelic kinetochore orientation versus chromosome mono-orientation in the origin of lagging chromosomes in human primary cells. J. Cell Sci. 115, 507–515 (2002).

    CAS  PubMed  Google Scholar 

  31. Beaudouin, J., Mora-Bermudez, F., Klee, T., Daigle, N. & Ellenberg, J. Dissecting the contribution of diffusion and interactions to the mobility of nuclear proteins. Biophys. J. 90, 1878–1894 (2006).

    Article  CAS  Google Scholar 

  32. Snapp, E. L., Iida, T., Frescas, D., Lippincott-Schwartz, J. & Lilly, M. A. The fusome mediates intercellular endoplasmic reticulum connectivity in Drosophila ovarian cysts. Mol. Biol. Cell 15, 4512–4521 (2004).

    Article  CAS  Google Scholar 

  33. Kimura, H. & Cook, P. R. Kinetics of core histones in living human cells: little exchange of H3 and H4 and some rapid exchange of H2B. J. Cell Biol. 153, 1341–1353 (2001).

    Article  CAS  Google Scholar 

  34. Gerlich, D. & Ellenberg, J. 4D imaging to assay complex dynamics in live specimens. Nature Cell Biol. 9, S14–S19 (2003).

    Google Scholar 

  35. Hirota, T., Gerlich, D., Koch, B., Ellenberg, J. & Peters, J. M. Distinct functions of condensin I and II in mitotic chromosome assembly. J. Cell Sci. 117, 6435–6445 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

MeCP2–EGFP was a kind gift from C. Cardoso. The anti-Aurora B antibody was a kind gift from J. M. Peters. We thank P. Lénart, M. Schuh, L. Sironi and J. M. Peters for fruitful discussions and critical reading of the manuscript. F.M.-B. was supported by the German Research Council (DFG EL 246/2-1/2) within the EuroDYNA European Science Foundation network (ESF 03-DYNA-F-29). D.G. was supported by a fellowship from the European Molecular Biology Organization (EMBO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Ellenberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mora-Bermúdez, F., Gerlich, D. & Ellenberg, J. Maximal chromosome compaction occurs by axial shortening in anaphase and depends on Aurora kinase. Nat Cell Biol 9, 822–831 (2007). https://doi.org/10.1038/ncb1606

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1606

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing