Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The polarity protein PAR-3 and TIAM1 cooperate in dendritic spine morphogenesis

Abstract

PAR-3 (partitioning-defective gene 3) is essential for cell polarization in many contexts, including axon specification. However, polarity proteins have not been implicated in later steps of neuronal differentiation, such as dendritic spine morphogenesis. Here, we show that PAR-3 is necessary for normal spine development in primary hippocampal neurons. Depletion of PAR-3 causes the formation of multiple filopodia- and lamellipodia-like dendritic protrusions — a phenotype similar to neurons expressing activated Rac. PAR-3 regulates spine formation by binding the Rac guanine nucleotide-exchange factor (GEF) TIAM1, and spatially restricting it to dendritic spines. Thus, a balance of PAR-3 and TIAM1 is essential to modulate Rac–GTP levels and to allow spine morphogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Silencing of PAR-3 expression affects spine morphology.
Figure 2: Effects of PAR-3 knockdown are dependent on Rac.
Figure 3: TIAM1 binds PAR-3 and regulates spine formation.
Figure 4: PAR-3 and TIAM1 cooperate in regulating spine formation.
Figure 5: Functional analyses of rescued spines.
Figure 6: PAR-3 regulates spine formation by spatially restricting TIAM1.
Figure 7: Model depicting the mechanism for the effect of PAR-3 on spine morphogenesis.

Similar content being viewed by others

References

  1. Hering, H. & Sheng, M. Dendritic spines: structure, dynamics and regulation. Nature Rev. Neurosci. 2, 880–888 (2001).

    Article  CAS  Google Scholar 

  2. Goda, Y. & Davis, G. W. Mechanisms of synapse assembly and disassembly. Neuron 40, 243–264 (2003).

    Article  CAS  Google Scholar 

  3. Fiala, J. C., Spacek, J. & Harris, K. M. Dendritic spine pathology: cause or consequence of neurological disorders? Brain Res. Brain Res. Rev. 39, 29–54 (2002).

    Article  Google Scholar 

  4. Halpain, S., Spencer, K. & Graber, S. Dynamics and pathology of dendritic spines. Prog. Brain Res. 147, 29–37 (2005).

    Article  CAS  Google Scholar 

  5. Macara, I. G. Parsing the polarity code. Nature Rev. Mol. Cell Biol. 5, 220–231 (2004).

    Article  CAS  Google Scholar 

  6. Ohno, S. Intercellular junctions and cellular polarity: the PAR–αPKC complex, a conserved core cassette playing fundamental roles in cell polarity. Curr. Opin. Cell Biol. 13, 641–648 (2001).

    Article  CAS  Google Scholar 

  7. Kemphues, K. J., Priess, J. R., Morton, D. G. & Cheng, N. S. Identification of genes required for cytoplasmic localization in early C. elegans embryos. Cell 52, 311–320 (1988).

    Article  CAS  Google Scholar 

  8. Schneider, S. Q. & Bowerman, B. Cell polarity and the cytoskeleton in the Caenorhabditis elegans zygote. Annu. Rev. Genet. 37, 221–249 (2003).

    Article  CAS  Google Scholar 

  9. Doe, C. Q. & Bowerman, B. Asymmetric cell division: fly neuroblast meets worm zygote. Curr. Opin. Cell Biol. 13, 68–75. (2001).

    Article  CAS  Google Scholar 

  10. Betschinger, J. & Knoblich, J. A. Dare to be different: asymmetric cell division in Drosophila, C. elegans and vertebrates. Curr. Biol. 14, R674–R685 (2004).

    Article  CAS  Google Scholar 

  11. Shi, S. H., Jan, L. Y. & Jan, Y. N. Hippocampal neuronal polarity specified by spatially localized mPar3–mPar6 and PI 3-kinase activity. Cell 112, 63–75 (2003).

    Article  CAS  Google Scholar 

  12. Munro, E., Nance, J. & Priess, J. R. Cortical flows powered by asymmetrical contraction transport PAR proteins to establish and maintain anterior–posterior polarity in the early C. elegans embryo. Dev. Cell 7, 413–424 (2004).

    Article  CAS  Google Scholar 

  13. Brummelkamp, T. R., Bernards, R. & Agami, R. A system for stable expression of short interfering RNAs in mammalian cells. Science 296, 550–553 (2002).

    Article  CAS  Google Scholar 

  14. Wei, X. et al. The zebrafish Pard3 ortholog is required for separation of the eye fields and retinal lamination. Dev. Biol. 269, 286–301 (2004).

    Article  CAS  Google Scholar 

  15. Chen, X. & Macara, I. G. Par-3 controls tight junction assembly through the Rac exchange factor Tiam1. Nature Cell Biol. 7, 262–269 (2005).

    Article  CAS  Google Scholar 

  16. Nakayama, A. Y., Harms, M. B. & Luo, L. Small GTPases Rac and Rho in the maintenance of dendritic spines and branches in hippocampal pyramidal neurons. J. Neurosci. 20, 5329–5338 (2000).

    Article  CAS  Google Scholar 

  17. Nishimura, T. et al. PAR-6–PAR-3 mediates Cdc42-induced Rac activation through the Rac GEFs STEF–Tiam1. Nature Cell Biol. 7, 270–277 (2005).

    Article  CAS  Google Scholar 

  18. Kunda, P. et al. Evidence for the involvement of Tiam1 in axon formation. J. Neurosci. 21, 2361–2372 (2001).

    Article  CAS  Google Scholar 

  19. Tanaka, M. et al. Tiam1 mediates neurite outgrowth induced by ephrin-B1 and EphA2. EMBO J. 23, 1075–1088 (2004).

    Article  CAS  Google Scholar 

  20. Tolias, K. F. et al. The Rac1 GEF Tiam1 couples the NMDA receptor to the activity-dependent development of dendritic arbors and spines. Neuron 45, 525–538 (2005).

    Article  CAS  Google Scholar 

  21. Stam, J. C. et al. Targeting of Tiam1 to the plasma membrane requires the cooperative function of the N-terminal pleckstrin homology domain and an adjacent protein interaction domain. J. Biol. Chem. 272, 28447–28454 (1997).

    Article  CAS  Google Scholar 

  22. Sala, C. et al. Regulation of dendritic spine morphology and synaptic function by Shank and Homer. Neuron 31, 115–130 (2001).

    Article  CAS  Google Scholar 

  23. Fischer, M. et al. Glutamate receptors regulate actin-based plasticity in dendritic spines. Nature Neurosci. 3, 887–894 (2000).

    Article  CAS  Google Scholar 

  24. Mertens, A. E. et al. The Rac activator Tiam1 controls tight junction biogenesis in keratinocytes through binding to and activation of the Par polarity complex. J. Cell Biol. 170, 1029–1037 (2005).

    Article  CAS  Google Scholar 

  25. Hirose, T. et al. Involvement of ASIP–PAR-3 in the promotion of epithelial tight junction formation. J. Cell Sci. 115, 2485–2495 (2002).

    CAS  PubMed  Google Scholar 

  26. Lin, D. et al. A mammalian PAR-3–PAR-6 complex implicated in Cdc42–Rac1 and αPKC signalling and cell polarity. Nature Cell Biol. 2, 540–547 (2000).

    Article  CAS  Google Scholar 

  27. Goslin, K., Asmussen, H. & Banker, G. Rat Hippocampal Neurons in Low-Density Culture (ed. Goslin, G. B.) (MIT Press, Cambridge, MA, 1998).

    Google Scholar 

  28. Zhang, H., Webb, D. J., Asmussen, H. & Horwitz, A. F. Synapse formation is regulated by the signalling adaptor GIT1. J. Cell Biol. 161, 131–142 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Fawcett and T. Pawson for providing the PAR-3 antibody, X. Chen and L. Gao for constructs and helpful discussions, and Y. Qin for help with culture of the hippocampal neurons. We would also like to extend our gratitude to A. Spang (Friedrich-Miescher-Laboratorium, Tübingen, Germany) and D. Webb (Vanderbilt University, Nashville, TN) for comments on the manuscript. This work was supported by grant GM070902 from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaye Zhang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Macara, I. The polarity protein PAR-3 and TIAM1 cooperate in dendritic spine morphogenesis. Nat Cell Biol 8, 227–237 (2006). https://doi.org/10.1038/ncb1368

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1368

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing