Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • State of the Art
  • Published:

State-of-the-Art

Fetal cardiology: changing the definition of critical heart disease in the newborn

Abstract

Infants born with congenital heart disease (CHD) may require emergent treatment in the newborn period. These infants are likely to benefit the most from a prenatal diagnosis, which allows for optimal perinatal planning. Several cardiac centers have created guidelines for the management of these high-risk patients with CHD. This paper will review and compare several prenatal CHD classification systems with a particular focus on the most critical forms of CHD in the fetus and newborn. A contemporary definition of critical CHD is one which requires urgent intervention in the first 24 h of life to prevent death. Such cardiac interventions may be not only life saving for the infant but also decrease subsequent morbidity. Critical CHD cases may require delivery at specialized centers that can provide perinatal, obstetric, cardiology and cardiothoracic surgery care. Fetuses diagnosed in mid-gestation require detailed fetal diagnostics and serial monitoring during the prenatal period, in order to assess for ongoing changes and identify progression to a more severe cardiac status. Critical CHD may progress in utero and there is still much to be learned about how to best predict those who will require urgent neonatal interventions. Despite improved therapeutic capabilities, newborns with critical CHD continue to have significant morbidity and mortality due to compromise that begins in the delivery room. Fetal echocardiography is the best way to predict the need for specialized care at birth to improve outcome. Once the diagnosis is made of critical CHD, delivery at the proper time and in appropriate institution with specific care protocols should be initiated. More work needs to be done to better delineate the risk factors for progression of critical CHD and to determine which newborns will require specialized care. The most frequently described forms of critical CHD requiring immediate intervention include hypoplastic left heart syndrome with intact or severely restricted atrial septum, obstructed total anomalous pulmonary venous return and transposition of the great arteries with restrictive atrial septum.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Berkley EM, Goens MB, Karr S, Rappaport V . Utility of fetal echocardiography in postnatal management of infants with prenatally diagnosed congenital heart disease. Prenat Diagn 2009; 29 (7): 654–658.

    Article  Google Scholar 

  2. Słodki M . Habilitation Thesis. Medical University Lodz, PWSZ Plock: Poland, 2012, https://www.researchgate.net/publication/291337775_Prenatal_and_perinatal_management_for_pregnant_women_with_fetal_cardiac_defects_based_on_new_prenatal_cardiac_anomalies_classification_Polish.

    Google Scholar 

  3. Donofrio MT, Levy RJ, Schuette JJ, Skurow-Todd K, Sten MB, Stallings C et al. Specialized delivery room planning for fetuses with critical congenital heart disease. Am J Cardiol 2013; 111 (5): 737–747.

    Article  Google Scholar 

  4. Pruetz JD, Carroll C, Trento LU, Chang RK, Detterich J, Miller DA et al. Outcomes of critical congenital heart disease requiring emergent neonatal cardiac intervention. Prenat Diagn 2014; 34 (12): 1127–1132.

    Article  Google Scholar 

  5. Respondek-Liberska M, Sklansky M, Wood D, Słodki M, Weiner S, Cuneo BF et al. Recommendations for fetal echocardiography in singleton pregnancy in 2015. Prenat Cardiol 2015; 5 (2): 28–34.

    Google Scholar 

  6. Donofrio MT, Skurow Todd K, Berger JT, McCarter R, Fulgium A, Krishnan A, Sable CA . Risk stratified postnatal care of newborns with congenital heart disease determined by fetal echocardiography. J Am Soc Echocardiogr 2015; 28 (11): 1339–1349.

    Article  Google Scholar 

  7. Słodki M, Respondek-Liberska M . Comment on ‘Outcomes of critical congenital heart disease requiring emergent neonatal cardiac intervention’: a new classification of congenital heart disease. Prenat Diagn 2015; 35 (6): 620–621.

    Article  Google Scholar 

  8. Strzelecka I, Moll J, Kornacka K, Zieliński A, Respondek-Liberska M . Do evolving fetal heart defects pose a separate clinical problem? Prenat Cardiol 2013; 3 (4): 9–14.

    Google Scholar 

  9. Yamamoto Y, Hornberger LK . Progression of outflow tract obstruction in the fetus. Early Hum Dev 2012; 88 (5): 279–285.

    Article  Google Scholar 

  10. Gardiner HM . Progression of fetal heart disease and rationale for fetal intracardiac interventions. Semin Fetal Neonatal Med 2005; 10 (6): 578–585.

    Article  Google Scholar 

  11. Tworetzky W, Wilkins-Haug L, Jennings RW, van der Velde ME, Marshall AC, Marx GR et al. Balloon dilation of severe aortic stenosis in the fetus: potential for prevention of hypoplastic left heart syndrome: candidate selection, technique, and results of successful intervention. Circulation 2004; 110 (15): 2125–2131.

    Article  Google Scholar 

  12. Respondek-Liberska M, Polaczek A, Słodki M, Janiak K, Dryżek P, Moll J et al. Retrospective analysis of medical records of 56 fetuses and 38 newborns after diagnosis of critical aortic stenosis. Prenat Cardiol 2012; 2 (1): 10–14 [Polish].

    Google Scholar 

  13. Mäkikallio K, McElhinney DB, Levine JC, Marx GR, Colan SD, Marshall AC et al. Fetal aortic valve stenosis and the evolution of hypoplastic left heart syndrome: patient selection for fetal intervention. Circulation 2006; 113 (11): 1401–1405.

    Article  Google Scholar 

  14. Hoffman JI, Kaplan S . The incidence of congenital heart disease. J Am Coll Cardiol 2002; 39 (12): 1890–1900.

    Article  Google Scholar 

  15. Nelle M, Raio L, Pavlovic M, Carrel T, Surbek D, Meyer-Wittkopf M . Prenatal diagnosis and treatment planning of congenital heart defects-possibilities and limits. World J Pediatr 2009; 5 (1): 18–22.

    Article  Google Scholar 

  16. Chang RK, Gurvitz M, Rodriguez S . Missed diagnosis of critical congenital heart disease. Arch Pediatr Adolesc Med 2008; 162 (10): 969–974.

    Article  Google Scholar 

  17. Schultz AH, Localio AR, Clark BJ, Ravishankar C, Videon N, Kimmel SE . Epidemiologic features of the presentation of critical congenital heart disease: implications for screening. Pediatrics 2008; 121 (4): 751–757.

    Article  Google Scholar 

  18. Vlahos AP, Lock JE, McElhinney DB, van der Velde ME . Hypoplastic left heart syndrome with intact or highly restrictive atrial septum outcome after neonatal transcatheter atrial septostomy. Circulation 2004; 109 (19): 2326–2330.

    Article  Google Scholar 

  19. Glatz J, Tabbutt S, Gaynor J, Rome J, Montenegro L, Spray T et al. Hypoplastic left heart syndrome with atrial level restriction in the era of prenatal diagnosis. Ann Thorac Surg 2007; 84 (5): 1633–1639.

    Article  Google Scholar 

  20. Jouannic JM, Gavard L, Fermont L, LeBidois J, Parat S, Vauhe PR et al. Sensitivity and specificity of prenatal features of physiological shunts to predict neonatal clinical status in transposition of the great arteries. Circulation 2004; 110 (13): 1743–1746.

    Article  Google Scholar 

  21. Donofrio MT, Moon-Grady AJ, Hornberger LK, Copel JA, Sklansky MS, Abuhamad A et al. Diagnosis and treatment of fetal cardiac disease: a scientific statement from the American Heart Association. Circulation 2014; 129 (21): 2183–2242.

    Article  Google Scholar 

  22. Atz AM, Feinstein JA, Jonas RA, Perry SB, Wessel DL . Preoperative management of pulmonary venous hypertension in hypoplastic left heart syndrome with restrictive atrial septal defect. Am J Cardiol 1999; 83 (8): 1224–1228.

    Article  CAS  Google Scholar 

  23. Rychik J, Rome JJ, Collins MH, DeCampli WM, Spray TL . The hypoplastic left heart syndrome with intact atrial septum: atrial morphology, pulmonary vascular histopathology and outcome. J Am Coll Cardiol 1999; 34 (2): 554–560.

    Article  CAS  Google Scholar 

  24. Cheatham JP . Intervention in the critically ill neonate and infant with hypoplastic left heart syndrome and intact atrial septum. J Interv Cardiol 2001; 14 (3): 357–366.

    Article  CAS  Google Scholar 

  25. Better DJ, Kaufman S, Allan LD . The normal pattern of pulmonary venous flow on pulsed Doppler examination of the human fetus. J Am Soc Echocardiogr 1996; 9 (3): 281–285.

    Article  CAS  Google Scholar 

  26. Taketazu M, Barrea C, Smallhorn JF, Wilson GJ, Hornberger LK . Intrauterine pulmonary venous flow and restrictive foramen ovale in fetal hypoplastic left heart syndrome. J Am Coll Cardiol 2004; 43 (10): 1902–1907.

    Article  Google Scholar 

  27. Lenz F, Chaoui R . Reference ranges for Doppler-assessed pulmonary venous blood flow velocities and pulsatility indices in normal human fetuses. Prenat Diagn 2002; 22 (9): 786–791.

    Article  Google Scholar 

  28. Słodki M, Respondek-Liberska M . Hypoplastic left heart syndrome at the tertiary fetal cardiac center: as planned, urgent or severest congenital heart disease. Prenat Cardiol 2013; 3 (4): 23–27.

    Google Scholar 

  29. Michelfelder E, Gomez C, Border W, Gottliebson W, Franklin C . Predictive value of fetal pulmonary venous flow patterns in identifying the need for atrial septoplasty in the newborn with hypoplastic left ventricle. Circulation 2005; 112 (19): 2974–2979.

    Article  Google Scholar 

  30. Divanović A, Hor K, Cnota J, Hirsch R, Kinsel-Ziter M, Michelfelder E . Prediction and perinatal management of severely restrictive atrial septum in fetuses with critical left heart obstruction: clinical experience using pulmonary venous Doppler analysis. J Thorac Cardiovasc Surg 2011; 141 (14): 988–994.

    Article  Google Scholar 

  31. Rychik J . Hypoplastic left heart syndrome: from in-utero diagnosis to school age. Semin Fetal Neonatal Med 2005; 10 (6): 553–566.

    Article  Google Scholar 

  32. Vida VL, Bacha EA, Larrazabal A, Gauvreau K, Thiagaragan R, Fynn-Thompson F et al. Hypoplastic left heart syndrome with intact or highly restrictive atrial septum: surgical experience from a single center. Ann Thorac Surg 2007; 84 (2): 581–585.

    Article  Google Scholar 

  33. Maeno YV, Kamenir SA, Sinclair B, van der Velde ME, Smallhorn JF, Hornberger LK . Prenatal features of ductus arteriosus constriction and restrictive foramen ovale in d-transposition of the great arteries. Circulation 1999; 99 (9): 1209–1214.

    Article  CAS  Google Scholar 

  34. Punn R, Silverman NH . Fetal predictors of urgent balloon atrial septostomy in neonates with complete transposition. J Am Soc Echocardiogr 2011; 24 (4): 425–430.

    Article  Google Scholar 

  35. Kiserud T, Rasmussen S . Ultrasound assessment of the fetal foramen ovale. Ultrasound Obstet Gynecol 2001; 17 (2): 119–124.

    Article  CAS  Google Scholar 

  36. Donofrio MT, Bremer YA, Moskowitz WB . Diagnosis and management of restricted or closed foramen ovale in fetuses with congenital heart disease. Am J Cardiol 2004; 94 (10): 1348–1351.

    Article  Google Scholar 

  37. Rasanen J, Wood DC, Weiner S, Ludomirski A, Huhta JC . Role of the pulmonary circulation in the distribution of human fetal cardiac output during the second half of pregnancy. Circulation 1996; 94 (5): 1068–1073.

    Article  CAS  Google Scholar 

  38. Sutton MS, Groves A, MacNeill A, Sharland G, Allan L . Assessment of changes in blood flow through the lungs and foramen ovale in the normal human fetus with gestational age: a prospective Doppler echocardiographic study. Br Heart J 1994; 71 (3): 232–237.

    Article  CAS  Google Scholar 

  39. Raboisson MJ, Samson C, Ducreux C, Rudigoz RC, Gaucherand P, Bouvagnet P et al. Impact of prenatal diagnosis of transposition of the great arteries on obstetric and early postnatal management. Eur J Obstet Gynecol Reprod Biol 2009; 142 (1): 18–22.

    Article  CAS  Google Scholar 

  40. Ganesan S, Brook MM, Silverman NH, Moon-Grady AJ . Prenatal findings in total anomalous pulmonary venous return: a diagnostic road map starts with obstetric screening views. J Ultrasound Med 2014; 33 (7): 1193–1207.

    Article  Google Scholar 

  41. Frommelt PC, Sheridan DC, Deatsman S, Yan K, Simpson P, Frommelt MA et al. Unobstructive total anomalous pulmonary venous return: impact of early elective repair on the need for prolonged mechanical ventilatory support. Pediatr Cardiol 2010; 31 (8): 1191–1197.

    Article  Google Scholar 

  42. Hancock Friesen CL, Zurakowski D, Thiagarajan RR, Forbess JM, del Nido PJ, Mayer JE et al. Total anomalous pulmonary venous connection: an analysis of current management strategies in a single institution. Ann Thorac Surg 2005; 79 (2): 596–606.

    Article  Google Scholar 

  43. Seale AN, Carvalho JS, Gardiner HM, Mellander M, Roughton M, Simpson J et al. Total anomalous pulmonary venous connection: impact of prenatal diagnosis. Ultrasound Obstet Gynecol 2012; 40 (3): 310–318.

    Article  CAS  Google Scholar 

  44. Karamlou T, Gurofsky R, Al Sukhni E, Coles JG, Williams WG, Caldarone CA et al. Factors associated with mortality and reoperation in 377 children with total anomalous pulmonary venous connection. Circulation 2007; 115 (12): 1591–1598.

    Article  Google Scholar 

  45. Bonnet D, Coltri A, Butera G, Fermont L, Le Bidois J, Kachaner J et al. Detection of transposition of the great arteries in fetuses reduces neonatal morbidity and mortality. Circulation 1999; 99 (7): 916–918.

    Article  CAS  Google Scholar 

  46. Franklin O, Burch M, Manning N, Sleeman K, Gould S, Archer N . Prenatal diagnosis of coarctation of the aorta improves survival and reduces morbidity. Heart 2002; 87 (1): 67–69.

    Article  CAS  Google Scholar 

  47. Kohl T . Chronic intermittent materno-fetal hyperoxygenation in late gestation may improve on hypoplastic cardiovascular structures associated with cardiac malformations in human fetuses. Pediatr Cardiol 2010; 31 (2): 250–263.

    Article  Google Scholar 

  48. Enzensberger C, Axt-Fliedner R, Degenhardt J, Kawecki A, Tenzer A, Kohl T et al. Pulmonary vasoreactivity to materno-fetal hyperoxygenation testing in fetuses with hypoplastic left heart. Ultraschall Med. e-pub ahead of print 21 January 2015..

    Article  Google Scholar 

  49. Żarkowska-Szaniawska A, Janiak K, Foryś S, Słodki M, Respondek-Liberska M . Maternal hyperoxygenation test in prediction of fetal lung hypoplasia—preliminary report. Ginekol Pol 2011; 82 (11): 834–839 [Polish].

    PubMed  Google Scholar 

  50. Channing A, Szwast A, Natarajan S, Degenhardt K, Tian Z, Rychik J . Maternal hyperoxygenation improves left heart filling in fetuses with atrial septal aneurysm causing impediment to left ventricular inflow. Ultrasound Obstet Gynecol 2015; 45 (6): 664–669.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Słodki.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Słodki, M., Respondek-Liberska, M., Pruetz, J. et al. Fetal cardiology: changing the definition of critical heart disease in the newborn. J Perinatol 36, 575–580 (2016). https://doi.org/10.1038/jp.2016.20

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jp.2016.20

This article is cited by

Search

Quick links