Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Sex determines cardiovascular hemodynamics in hypertension

Subjects

Abstract

The aim of this study was to evaluate the influence of sex on cardiovascular hemodynamics and heart remodeling in 144 patients with arterial hypertension that underwent: (1) echocardiography (that is, indices of left ventricular diastolic function: e′, E/e′), (2) impedance cardiography (that is, systemic vascular resistance (SVR), total artery compliance (TAC) and Heather index (HI)) and (3) applanation tonometry (augmentation index (AI), central systolic and diastolic blood pressure (CSBP, CDBP), central pulse pressure (CPP)). Women, in comparison with men, revealed to have: (1) stiffer arteries—lower TAC (1.93±0.55 vs 2.16±0.59 ml per mm Hg; P=0.025), higher CSBP (128.7±14.9 vs 123.4±13.2 mm Hg; P=0.036), CPP (39.9±9.5 vs 33.8±9.0 mm Hg; P=0.0002), AI (31.5±8.7 vs 17.5±12.7%; P<0.00001), SVR (1257.6±305.6 vs 1091.2±240.7 dyn × s × cm5; P=0.002) and (2) higher left ventricular performance—HI (16.3±4.3 vs 11.7±3.2 Ohm × s2; P<0.00001). In women CSBP, CPP and AI were more clearly associated with left ventricular filling pressure (e′) (r=−0.39, r=−0.45, r=−0.44, P<0.01; respectively). These relations were remarkably weaker in men. Hypertensive women characterized with lower large artery compliance, more pronounced augmentation of central blood pressure and more distinctive association of central blood pressure with left ventricular diastolic function. Sex differences in cardiovascular function can impact the individualized management of arterial hypertension.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Mancia G, Fagard R, Narkiewicz K, Redón J, Zanchetti A, Böhm M et al. 2013 ESH/ESC Guidelines for the management of arterial hypertension: the Task Force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens 2013; 31: 1281–1357.

    Article  CAS  PubMed  Google Scholar 

  2. Pemu PI, Ofili E . Hypertension in women—part I. J Clin Hypertens (Greenwich) 2008; 10 (6): 406–410.

    Article  Google Scholar 

  3. Ferrario CM, Jessup JA, Smith RD . Hemodynamic and hormonal patterns of untreated essential hypertension in men and women. Ther Adv Cardiovasc Dis 2013; 7 (6): 293–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Reckelhoff JF, Roman RJ . Androgens and hypertension: role in both males and females? Hypertension 2011; 57 (4): 681–682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Narkiewicz K, Phillips BG, Kato M, Hering D, Bieniaszewski L, Somers VK . Gender-selective interaction between aging, blood pressure, and sympathetic nerve activity. Hypertension 2005; 45 (4): 522–525.

    Article  CAS  PubMed  Google Scholar 

  6. Park S, Ha JW, Shim CY, Choi EY, Kim JM, Ahn JA et al. Gender-related difference in arterial elastance during exercise in patients with hypertension. Hypertension 2008; 51 (4): 1163–1169.

    Article  CAS  PubMed  Google Scholar 

  7. Hart EC, Charkoudian N, Wallin BG, Curry TB, Eisenach JH, Joyner MJ . Sex differences in sympathetic neural-hemodynamic balance: implications for human blood pressure regulation. Hypertension 2009; 53 (3): 571–576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Christou DD, Jones PP, Jordan J, Diedrich A, Robertson D, Seals DR . Women have lower tonic autonomic support of arterial blood pressure and less effective baroreflex buffering than men. Circulation 2005; 111 (4): 494–498.

    Article  PubMed  Google Scholar 

  9. Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA et al. Recommendations for chamber quantification. Eur J Echocardiogr 2006; 7 (2): 79–108.

    Article  PubMed  Google Scholar 

  10. Nagueh SF, Appleton CP, Gillebert TC, Marino PN, Oh JK, Smiseth OA et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography. Eur J Echocardiogr 2009; 10 (2): 165–193.

    Article  PubMed  Google Scholar 

  11. Pauca AL, O’Rourke MF, Kon ND . Prospective evaluation of a method for estimating ascending aortic pressure from the radial artery pressure waveform. Hypertension 2001; 38: 932–937.

    Article  CAS  PubMed  Google Scholar 

  12. Shim CY, Park S, Choi D, Yang WI, Cho IJ, Choi EY et al. Sex differences in central hemodynamics and their relationship to left ventricular diastolic function. J Am Coll Cardiol 2011; 57 (10): 1226–1233.

    Article  PubMed  Google Scholar 

  13. Doumas M, Papademetriou V, Faselis C, Kokkinos P . Gender differences in hypertension: myths and reality. Curr Hypertens Rep 2013; 15 (4): 321–330.

    Article  PubMed  Google Scholar 

  14. Smulyan H, Asmar RG, Rudnicki A, London GM, Safar ME . Comparative effects of aging in men and women on the properties of the arterial tree. J Am Coll Cardiol 2001; 37 (5): 1374–1380.

    Article  CAS  PubMed  Google Scholar 

  15. Berry KL, Cameron JD, Dart AM, Dewar EM, Gatzka CD, Jennings GL et al. Large-artery stiffness contributes to the greater prevalence of systolic hypertension in elderly women. J Am Geriatr Soc 2004; 52 (3): 368–373.

    Article  PubMed  Google Scholar 

  16. Segers P, Rietzschel ER, De Buyzere ML, Vermeersch SJ, De Bacquer D, Van Bortel LM et al. Noninvasive (input) impedance, pulse wave velocity, and wave reflection in healthy middle-aged men and women. Hypertension 2007; 49 (6): 1248–1255.

    Article  CAS  PubMed  Google Scholar 

  17. McKinney ME, Buell JC, Eliot RS . Sex differences in transthoracic impedance: evaluation of effects on calculated stroke volume index. Aviat Space Environ Med 1984; 55 (10): 893–895.

    CAS  PubMed  Google Scholar 

  18. Frey MA, Doerr BM, Miles DS . Transthoracic impedance: differences between men and women with implications for impedance cardiography. Aviat Space Environ Med 1982; 53 (12): 1190–1192.

    CAS  PubMed  Google Scholar 

  19. Gerdts E, Okin PM, de Simone G, Cramariuc D, Wachtell K, Boman K et al. Gender differences in left ventricular structure and function during antihypertensive treatment: the Losartan Intervention for Endpoint Reduction in Hypertension Study. Hypertension 2008; 51 (4): 1109–1114.

    Article  CAS  PubMed  Google Scholar 

  20. Gerdts E, Zabalgoitia M, Björnstad H, Svendsen TL, Devereux RB . Gender differences in systolic left ventricular function in hypertensive patients with electrocardiographic left ventricular hypertrophy (the LIFE study). Am J Cardiol 2001; 87 (8): 980–983.

    Article  CAS  PubMed  Google Scholar 

  21. Hayward CS, Kalnins WV, Kelly RP . Gender-related differences in left ventricular chamber function. Cardiovasc Res 2001; 49 (2): 340–350.

    Article  CAS  PubMed  Google Scholar 

  22. Garavaglia GE, Messerli FH, Schmieder RE, Nunez BD, Oren S . Sex differences in cardiac adaptation to essential hypertension. Eur Heart J 1989; 10 (12): 1110–1114.

    Article  CAS  PubMed  Google Scholar 

  23. Cuspidi C, Rescaldani M, Sala C . Prevalence of echocardiographic left-atrial enlargement in hypertension: a systematic review of recent clinical studies. Am J Hypertens 2013; 26 (4): 456–464.

    Article  PubMed  Google Scholar 

  24. Canepa M, Alghatrif M, Strait JB, Cheng HM, Chuang SY, Chen CH et al. Early contribution of arterial wave reflection to left ventricular relaxation abnormalities in a community-dwelling population of normotensive and untreated hypertensive men and women. J Hum Hypertens 2014; 28 (2): 85–91.

    Article  CAS  PubMed  Google Scholar 

  25. Borlaug BA, Melenovsky V, Redfield MM, Kessler K, Chang HJ, Abraham TP et al. Impact of arterial load and loading sequence on left ventricular tissue velocities in humans. J Am Coll Cardiol 2007; 50 (16): 1570–1577.

    Article  PubMed  Google Scholar 

  26. Witt H, Schubert C, Jaekel J, Fliegner D, Penkalla A, Tiemann K et al. Sex-specific pathways in early cardiac response to pressure overload in mice. J Mol Med (Berl) 2008; 86 (9): 1013–1024.

    Article  Google Scholar 

  27. Weinberg EO, Thienelt CD, Katz SE, Bartunek J, Tajima M, Rohrbach S et al. Gender differences in molecular remodeling in pressure overload hypertrophy. J Am Coll Cardiol 1999; 34 (1): 264–273.

    Article  CAS  PubMed  Google Scholar 

  28. Charkoudian N . Influences of female reproductive hormones on sympathetic control of the circulation in humans. Clin Auton Res 2001; 11 (5): 295–301.

    Article  CAS  PubMed  Google Scholar 

  29. Sudhir K, Jennings GL, Funder JW, Komesaroff PA . Estrogen enhances basal nitric oxide release in the forearm vasculature in perimenopausal women. Hypertension 1996; 28 (3): 330–334.

    Article  CAS  PubMed  Google Scholar 

  30. Minson CT, Halliwill JR, Young TM, Joyner MJ . Influence of the menstrual cycle on sympathetic activity, baroreflex sensitivity, and vascular transduction in young women. Circulation 2000; 101 (8): 862–868.

    Article  CAS  PubMed  Google Scholar 

  31. Hilliard LM, Sampson AK, Brown RD, Denton KM . The "his and hers" of the renin-angiotensin system. Curr Hypertens Rep 2013; 15 (1): 71–79.

    Article  CAS  PubMed  Google Scholar 

  32. Zimmerman MA, Sullivan JC . Hypertension: what's sex got to do with it? Physiology (Bethesda) 2013; 28 (4): 234–244.

    CAS  Google Scholar 

  33. Waddell TK, Dart AM, Gatzka CD, Cameron JD, Kingwell BA . Women exhibit a greater age-related increase in proximal aortic stiffness than men. J Hypertens 2001; 19 (12): 2205–2212.

    Article  CAS  PubMed  Google Scholar 

  34. Turnbull F, Woodward M, Neal B, Barzi F, Ninomiya T, Chalmers J et al. Do men and women respond differently to blood pressure-lowering treatment? Results of prospectively designed overviews of randomized trials. Eur Heart J 2008; 29: 2669–2680.

    Article  PubMed  Google Scholar 

  35. Fan X, Han Y, Sun K, Wang Y, Xin Y, Bai Y et al. Sex differences in blood pressure response to antihypertensive therapy in Chinese patients with hypertension. Ann Pharmacother 2008; 42 (12): 1772–1781.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The study was supported by the Ministry of Science and Higher Education/Military Institute of Medicine, Warsaw, Poland (grant no 148/WIM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Krzesiński.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krzesiński, P., Stańczyk, A., Gielerak, G. et al. Sex determines cardiovascular hemodynamics in hypertension. J Hum Hypertens 29, 610–617 (2015). https://doi.org/10.1038/jhh.2014.134

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jhh.2014.134

This article is cited by

Search

Quick links