Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Effect of fractalkine-Fc delivery in experimental lung metastasis using DNA/704 nanospheres

Abstract

The lung is one target organ to which solid tumors frequently metastasize. Given the systemic adverse effects of currently available treatments, developing effective strategies of drug/gene delivery directly to the lungs is therefore needed. Aerosol delivery is a non-invasive gene transfer approach to target the airways. Here, we sought to evaluate the potential to deliver a fractalkine (FKN)-encoding plasmid formulated with the tetrafunctional amphiphilic block copolymer 704 through aerosolization in two models of pulmonary metastases. FKN is a chemokine recently described as a good candidate to stimulate a strong antitumor immune response in various forms of cancers. Here, we have assessed the effect of single and repeated aerosolizations of FKN-encoding plasmid formulated with 704 on the development of experimental lung metastases of mouse colon carcinoma and osteosarcoma. For this purpose, we have designed FKN-Fc sequences encoding an optimized version of the chemokine. Repeated intratracheal administrations of 704/FKN-Fc markedly inhibited growth of experimental lung metastases of CT-26 and K7M2 cells. Our results showed that tetrafunctional amphiphilic block copolymer 704 is a highly efficient synthetic vector for mediating local and safe gene transfer into the lung. In addition, FKN-Fc gene therapy of pulmonary nodules may provide a promising immunotherapeutic approach.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

FKN:

fractalkine

PEI:

polyethyleneimine

CAT:

chloramphenicol acetyl transferase

IL-6:

interleukin-6

NK cell:

natural killer cell

References

  1. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ . Cancer statistics, 2009. CA Cancer J Clin 2009; 59: 225–249.

    Article  PubMed  Google Scholar 

  2. Homey B, Muller A, Zlotnik A . Chemokines: agents for the immunotherapy of cancer? Nat Rev Immunol 2002; 2: 175–184.

    Article  CAS  PubMed  Google Scholar 

  3. Rosenblatt JD, Shin SU, Nechustan H, Yi KH, Tolba K . Potential role of chemokines in immune therapy of cancer. Isr Med Assoc J 2002; 4: 1054–1059.

    CAS  PubMed  Google Scholar 

  4. Flanagan K, Kaufman HL . Chemokines in tumor immunotherapy. Front Biosci 2006; 11: 1024–1030.

    Article  CAS  PubMed  Google Scholar 

  5. Gao JQ, Okada N, Mayumi T, Nakagawa S . Immune cell recruitment and cell-based system for cancer therapy. Pharm Res 2008; 25: 752–768.

    Article  CAS  PubMed  Google Scholar 

  6. Ohta M, Tanaka F, Yamaguchi H, Sadanaga N, Inoue H, Mori M . The high expression of fractalkine results in a better prognosis for colorectal cancer patients. Int J Oncol 2005; 26: 41–47.

    CAS  PubMed  Google Scholar 

  7. Mlecnik B, Tosolini M, Charoentong P, Kirilovsky A, Bindea G, Berger A et al. Biomolecular network reconstruction identifies T-cell homing factors associated with survival in colorectal cancer. Gastroenterology 2010; 138: 1429–1440.

    Article  CAS  PubMed  Google Scholar 

  8. Lavergne E, Combadiere B, Bonduelle O, Iga M, Gao JL, Maho M et al. Fractalkine mediates natural killer-dependent antitumor responses in vivo. Cancer Res 2003; 63: 7468–7474.

    CAS  PubMed  Google Scholar 

  9. Guo J, Zhang M, Wang B, Yuan Z, Guo Z, Chen T et al. Fractalkine transgene induces T-cell-dependent antitumor immunity through chemoattraction and activation of dendritic cells. Int J Cancer 2003; 103: 212–220.

    Article  CAS  PubMed  Google Scholar 

  10. Zeng Y, Jiang J, Huebener N, Wenkel J, Gaedicke G, Xiang R et al. Fractalkine gene therapy for neuroblastoma is more effective in combination with targeted IL-2. Cancer Lett 2005; 228: 187–193.

    Article  CAS  PubMed  Google Scholar 

  11. Xin H, Kikuchi T, Andarini S, Ohkouchi S, Suzuki T, Nukiwa T et al. Antitumor immune response by CX3CL1 fractalkine gene transfer depends on both NK and T cells. Eur J Immunol 2005; 35: 1371–1380.

    Article  CAS  PubMed  Google Scholar 

  12. Nukiwa M, Andarini S, Zaini J, Xin H, Kanehira M, Suzuki T et al. Dendritic cells modified to express fractalkine/CX3CL1 in the treatment of preexisting tumors. Eur J Immunol 2006; 36: 1019–1027.

    Article  CAS  PubMed  Google Scholar 

  13. Vitale S, Cambien B, Karimdjee BF, Barthel R, Staccini P, Luci C et al. Tissue-specific differential antitumour effect of molecular forms of fractalkine in a mouse model of metastatic colon cancer. Gut 2007; 56: 365–372.

    Article  CAS  PubMed  Google Scholar 

  14. Brueckmann M, Borggrefe M . Therapeutic potential of fractalkine: a novel approach to metastatic colon cancer. Gut 2007; 56: 314–316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Xin H, Sun R, Kanehira M, Takahata T, Itoh J, Mizuguchi H et al. Intratracheal delivery of CX3CL1-expressing mesenchymal stem cells to multiple lung tumors. Mol Med 2009; 15: 321–327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Momin EN, Mohyeldin A, Zaidi HA, Vela G, Quinones-Hinojosa A . Mesenchymal stem cells: new approaches for the treatment of neurological diseases. Curr Stem Cell Res Ther 2010; 5: 326–344.

    Article  CAS  PubMed  Google Scholar 

  17. Bar J, Herbst RS, Onn A . Targeted drug delivery strategies to treat lung metastasis. Expert Opin Drug Deliv 2009; 6: 1003–1016.

    Article  CAS  PubMed  Google Scholar 

  18. Densmore CL, Orson FM, Xu B, Kinsey BM, Waldrep JC, Hua P et al. Aerosol delivery of robust polyethyleneimine-DNA complexes for gene therapy and genetic immunization. Mol Ther 2000; 1: 180–188.

    Article  CAS  PubMed  Google Scholar 

  19. Goula D, Becker N, Lemkine GF, Normandie P, Rodrigues J, Mantero S et al. Rapid crossing of the pulmonary endothelial barrier by polyethylenimine/DNA complexes. Gene Ther 2000; 7: 499–504.

    Article  CAS  PubMed  Google Scholar 

  20. Desigaux L, Gourden C, Bello-Roufaï M, Richard P, Oudrhiri N, Lehn P et al. Nonionic amphiphilic block copolymers promote gene transfer to the lung. Hum Gene Ther 2005; 16: 821–829.

    Article  CAS  PubMed  Google Scholar 

  21. Pitard B, Bello-Roufaï M, Lambert O, Richard P, Desigaux L, Fernandes S et al. Negatively charged self-assembling DNA/poloxamine nanospheres for in vivo gene transfer. Nucleic Acids Res 2004; 32: e159.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ferrari S, Moro E, Pettenazzo A, Behr JP, Zacchello F, Scarpa M . ExGen 500 is an efficient vector for gene delivery to lung epithelial cells in vitro and in vivo. Gene Ther 1997; 4: 1100–1106.

    Article  CAS  PubMed  Google Scholar 

  23. McIlroy D, Barteau B, Cany J, Richard P, Gourden C, Conchon S et al. DNA/amphiphilic block copolymer nanospheres promote low-dose DNA vaccination. Mol Ther 2009; 17: 1473–1481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pollard H, Remy JS, Loussouarn G, Demolombe S, Behr JP, Escande D . Polyethylenimine but not cationic lipids promotes transgene delivery to the nucleus in mammalian cells. J Biol Chem 1998; 273: 7507–7511.

    Article  CAS  PubMed  Google Scholar 

  25. Piron J, Quang KL, Briec F, Amirault JC, Leoni AL, Desigaux L et al. Biological pacemaker engineered by nonviral gene transfer in a mouse model of complete atrioventricular block. Mol Ther 2008; 16: 1937–1943.

    Article  CAS  PubMed  Google Scholar 

  26. Ziady AG, Gedeon CR, Miller T, Quan W, Payne JM, Hyatt SL et al. Transfection of airway epithelium by stable PEGylated poly-L-lysine DNA nanoparticles in vivo. Mol Ther 2003; 8: 936–947.

    Article  CAS  PubMed  Google Scholar 

  27. Loebinger MR, Janes SM . Stem cells as vectors for antitumour therapy. Thorax 2010; 65: 362–369.

    Article  PubMed  Google Scholar 

  28. Yang Y, Li Q, Ertl HC, Wilson JM . Cellular and humoral immune responses to viral antigens create barriers to lung-directed gene therapy with recombinant adenoviruses. J Virol 1995; 69: 2004–2015.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Van Ginkel FW, Liu C, Simecka JW, Dong JY, Greenway T, Frizzell RA et al. Intratracheal gene delivery with adenoviral vector induces elevated systemic IgG and mucosal IgA antibodies to adenovirus and beta-galactosidase. Hum Gene Ther 1995; 6: 895–903.

    Article  CAS  PubMed  Google Scholar 

  30. Guo J, Chen T, Wang B, Zhang M, An H, Guo Z et al. Chemoattraction, adhesion and activation of natural killer cells are involved in the antitumor immune response induced by fractalkine/CX3CL1. Immunol Lett 2003; 89: 1–7.

    Article  CAS  PubMed  Google Scholar 

  31. Tang DW, Li LF, Yu YM, Liu XY, Su XD, Zhao X et al. Preparation, crystallization and preliminary X-ray analysis of threonine synthase from Streptococcus mutans. Protein Pept Lett 2007; 14: 836–838.

    Article  CAS  PubMed  Google Scholar 

  32. Kobayashi M, Fitz L, Ryan M, Hewick RM, Clark SC, Chan S et al. Identification and purification of natural killer cell stimulatory factor (NKSF), a cytokine with multiple biologic effects on human lymphocytes. J Exp Med 1989; 170: 827–845.

    Article  CAS  PubMed  Google Scholar 

  33. Gately MK, Wolitzky AG, Quinn PM, Chizzonite R . Regulation of human cytolytic lymphocyte responses by interleukin-12. Cell Immunol 1992; 143: 127–142.

    Article  CAS  PubMed  Google Scholar 

  34. Manetti R, Parronchi P, Giudizi MG, Piccinni MP, Maggi E, Trinchieri G et al. Natural killer cell stimulatory factor (interleukin 12 [IL-12]) induces T helper type 1 (Th1)-specific immune responses and inhibits the development of IL-4-producing Th cells. J Exp Med 1993; 177: 1199–1204.

    Article  CAS  PubMed  Google Scholar 

  35. Hsieh CS, Macatonia SE, Tripp CS, Wolf SF, O’Garra A, Murphy KM . Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science 1993; 260: 547–549.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Violette Breittmayer for excellent technical assistance, Clothilde Gourden for excellent technical expertise in in vivo experiments, In-Cell-Art for providing tetrafunctional amphiphilic block copolymers and the Animal Facility of the Centre Méditerranéen de Médecine Moléculaire (Institut National de la Santé et de la Recherche Médicale, Unit 895). This research was supported in part by the Institut National de la Santé et de la Recherche Médicale, by the Centre National de la Recherche Scientifique, by the Association pour la Recherche sur le Cancer (ARC, Grant 3707), by Vaincre La Mucoviscidose (Paris, France) and the Association Française contre les Myopathies (Evry, France). PR-F was the recipient of a fellowship from the ARC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Schmid-Alliana.

Ethics declarations

Competing interests

The authors declare no conflict of interest, except B Pitard who owns stocks in In-Cell-Art Co., which commercializes amphiphilic block copolymers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richard-Fiardo, P., Cambien, B., Pradelli, E. et al. Effect of fractalkine-Fc delivery in experimental lung metastasis using DNA/704 nanospheres. Cancer Gene Ther 18, 761–772 (2011). https://doi.org/10.1038/cgt.2011.42

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2011.42

Keywords

This article is cited by

Search

Quick links