Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Silencing of HIF-1α suppresses tumorigenicity of renal cell carcinoma through induction of apoptosis

Abstract

Hypoxia-inducible factor-1α (HIF-1α) is a main responder to intracellular hypoxia and is overexpressed in many human cancers, including renal cell carcinoma (RCC). To better understanding of the role of HIF-1α in the tumorigenicity of RCC, we used short-hairpin RNA (shRNA) interference to inhibit HIF-1α expression in the human renal cancer cell line, Caki-1 and OS-RC-2. Silencing of HIF-1α significantly reduced the expression of HIF-1α in both of renal cancer cell lines. In vitro downregulation of HIF-1α inhibited Caki-1 and OS-RC-2 cell growth, migration and invasion. The results further showed that HIF-1α silencing resulted in caspase-dependent apoptosis of Caki-1 and OS-RC-2 through regulation of PI3K/Akt pathway and Bcl-2-related proteins expression. In vivo animal studies showed that tumor growth was significantly inhibited in HIF-1α shRNA-transfected RCC. Intratumor gene therapy with polyethylenimine-loaded HIF-1α shRNA also resulted in tumor growth suppression. Thus, this study demonstrates that downregulation of HIF-1α could suppress tumorigenicity of RCC through induction of apoptosis, and HIF-1α shRNA may be a promising strategy for the treatment of RCC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Abbreviations

RNAi:

RNA interference

shRNA:

short-hairpin RNA

RCC:

renal cell carcinoma

References

  1. McLaughlin JK, Lipworth L . Epidemiologic aspects of renal cell cancer. Semin Oncol 2000; 27: 115–123.

    CAS  PubMed  Google Scholar 

  2. Murai M, Oya M . Renal cell carcinoma: etiology, incidence and epidemiology. Curr Opin Urol 2004; 14: 229–233.

    Article  PubMed  Google Scholar 

  3. Yagoda A, Petrylak D, Thompson S . Cytotoxic chemotherapy for advanced renal cell carcinoma. Urol Clin North Am 1993; 20: 303–321.

    CAS  PubMed  Google Scholar 

  4. Motzer RJ, Bacik J, Murphy BA, Russo P, Mazumdar M . Interferon-α as a comparative treatment for clinical trials of new therapies against advanced renal cell carcinoma. J Clin Oncol 2002; 20: 289–296.

    Article  CAS  PubMed  Google Scholar 

  5. Bukowski RM . Natural history and therapy of metastatic renal cell carcinoma: the role of interleukin-2. Cancer 1997; 80: 1198–1220.

    Article  CAS  PubMed  Google Scholar 

  6. Yagoda A . Phase II cytotoxic chemotherapy trials in renal cell carcinoma: 1983–1988. Prog Clin Biol Res 1990; 350: 227–241.

    CAS  PubMed  Google Scholar 

  7. Ke QD, Max C . Hypoxia-inducible factor-1 (HIF-1). Mol Pharmacol 2006; 70: 1469–1480.

    Article  CAS  PubMed  Google Scholar 

  8. Semenza GL . Targeting HIF-1 for cancer therapy. Nat Rev Cancer 2003; 3: 721–732.

    Article  CAS  PubMed  Google Scholar 

  9. Talks KL, Turley H, Gatter KC, Maxwell PH, Pugh CW, Ratcliffe PJ et al. The expression and distribution of the hypoxia-inducible factors HIF-1alpha and HIF-2alpha in normal human tissues, cancers, and tumor-associated macrophages. Am J Pathol 2000; 157: 411–421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhong H, De Marzo AM, Laughner E, Lim M, Hilton DA, Zagzag D et al. Overexpression of hypoxia-inducible factor 1α in common human cancers and their metastases. Cancer Res 1999; 59: 5830–5835.

    CAS  PubMed  Google Scholar 

  11. Talks KL, Turley H, Gatter KC, Maxwell PH, Pugh CW, Ratcliffe PJ et al. The expression and distribution of the hypoxia-inducible factors HIF-1α and HIF-2α in normal human tissues, cancers, and tumor-associated macrophages. Am J Pathol 2000; 157: 411–421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Beasley NJ, Leek R, Alam M, Turley H, Cox GJ, Gatter K et al. Hypoxia-inducible factors HIF-1α and HIF-2α in head and neck cancer: relationship to tumor biology and treatment outcome in surgically resected patients. Cancer Res 2002; 62: 2493–2497.

    CAS  PubMed  Google Scholar 

  13. Volm M, Koomagi R . Hypoxia-inducible factor (HIF-1) and its relationship to apoptosis and proliferation in lung cancer. Anticancer Res 2002; 20: 1527–1533.

    Google Scholar 

  14. Harris AL . Hypoxia-α key regulatory factor in tumour growth. Nat Rev Cancer 2002; 2: 38–47.

    Article  CAS  PubMed  Google Scholar 

  15. Pugh CW, Ratcliffe PJ . Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med 2003; 9: 677–684.

    Article  CAS  PubMed  Google Scholar 

  16. Thomas R, Kim MH . HIF-1 alpha: a key survival factor for serum-deprived prostate cancer cells. Prostate 2008; 68: 1405–1415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang Y, Pakunlu RI, Tsao W, Pozharov V, Minko T . Bimodal effect of hypoxia in cancer: role of hypoxia inducible factor in apoptosis. Mol Pharmacol 2004; 1: 156–165.

    Article  CAS  Google Scholar 

  18. Sun X, Kanwar JR, Leung E, Lehnert K, Wang D, Krissansen GW . Gene transfer of antisense hypoxia inducible factor-1 alpha enhances the therapeutic efficacy of cancer immunotherapy. Gene Therapy 2001; 8: 638–645.

    Article  CAS  PubMed  Google Scholar 

  19. Maemura K, Hsieh CM, Jain MK, Fukumoto S, Layne MD, Liu Y et al. Generation of a dominant-negative mutant of endothelial PAS domain protein 1 by deletion of a potent C-terminal transactivation domain. J Biol Chem 1999; 274: 31565–31570.

    Article  CAS  PubMed  Google Scholar 

  20. Mizuno T, Nagao M, Yamada Y, Narikiyo M, Ueno M, Miyagishi M et al. Small interfering RNA expression vector targeting hypoxia-inducible factor 1 alpha inhibits tumor growth in hepatobiliary and pancreatic cancers. Cancer Gene Ther 2006; 13: 131–140.

    Article  CAS  PubMed  Google Scholar 

  21. Wiesener MS, Munchenhagen PM, Berger I, Morgan NV, Roigas J, Schwiertz A et al. Constitutive activation of hypoxia-inducible genes related to overexpression of hypoxia-inducible factor-1a in clear cell renal carcinoma. Cancer Res 2001; 61: 5215–5222.

    CAS  PubMed  Google Scholar 

  22. Klatte T, Seligson DB, Riggs SB, Leppert JT, Berkman MK, Kleid MD et al. Hypoxia-inducible factor 1 alpha in clear cell renal cell carcinoma. Clin Cancer Res 2007; 13: 7388–7393.

    Article  CAS  PubMed  Google Scholar 

  23. Lidgren A, Hedberg Y, Grankvist K, Rasmuson T, Vasko J, Ljungberg B . The expression of hypoxia-inducible factor 1alpha is a favorable independent prognostic factor in renal cell carcinoma. Clin Cancer Res 2005; 11: 1129–1135.

    CAS  PubMed  Google Scholar 

  24. Yao M, Yoshida M, Kishida T, Nakaigawa N, Baba M, Kobayashi K et al. VHL tumor suppressor gene alterations associated with good prognosis in sporadic clear-cell renal carcinoma. J Natl Cancer Inst 2002; 20: 1569–1575.

    Article  Google Scholar 

  25. Mehlen P, Puisieux A . Metastasis: a question of life or death. Nat Rev Cancer 2006; 6: 449–458.

    Article  CAS  PubMed  Google Scholar 

  26. Igney FH, Krammer PH . Death and anti-death: tumour resistance to apoptosis. Nat Rev Cancer 2002; 2: 277–288.

    Article  CAS  PubMed  Google Scholar 

  27. Wang J, Yang J, Kuropatwinski K, Wang W, Liu XQ, Hauser J et al. Transforming growth factor beta induces apoptosis through repressing the phosphoinositide 3-kinase/AKT/survivin pathway in colon cancer cells. Cancer Res 2008; 68: 3152–3160.

    Article  CAS  PubMed  Google Scholar 

  28. Fan KX, Dai JX, Wang H, Wei HF, Cao ZG, Hou S et al. Treatment of collagen-induced arthritis with an anti-osteopontin monoclonal antibody through promotion of apoptosis of both murine and human activated T cells. Arthritis Rheum 2008; 58: 2041–2052.

    Article  CAS  PubMed  Google Scholar 

  29. Jia SF, Worth LL, Densmore CL, Xu B, Zhou Z, Kleinerman ES . Eradication of osteosarcoma lung metastases following intranasal interleukin-12 gene therapy using a nonviral polyethylenimine vector. Cancer Gene Ther 2002; 9: 260–266.

    Article  CAS  PubMed  Google Scholar 

  30. Semenza GL . Targeting HIF-1 for cancer therapy. Nat Rev Cancer 2003; 3: 721–732.

    Article  CAS  PubMed  Google Scholar 

  31. Qiao J, Kang J, Ishola TA, Rychahou PG, Evers BM, Chung DH . Gastrin-releasing peptide receptor silencing suppresses the tumorigenesis and metastatic potential of neuroblastoma. Proc Natl Acad Sci USA 2008; 105: 12891–12896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jeong SJ, Pise-Masison CA, Radonovich MF, Park HU, Brady JN . Activated AKT regulates NF-kappaB activation, p53 inhibition and cell survival in HTLV-1-transformed cells. Oncogene 2005; 24: 6719–6728.

    Article  CAS  PubMed  Google Scholar 

  33. Tang ED, Nuñez G, Barr FG, Guan KL . Negative regulation of the forkhead transcription factor FKHR by Akt. J Biol Chem 1999; 274: 16741–16746.

    Article  CAS  PubMed  Google Scholar 

  34. Tsujimoto Y . Cell death regulation by the Bcl-2 protein family in the mitochondria. J Cell Physiol 2003; 195: 158–167.

    Article  CAS  PubMed  Google Scholar 

  35. Gross A, Jockel J, Wei MC, Korsmeyer SJ . Enforced dimerization of BAX results in its translocation, mitochondrial dysfunction and apoptosis. EMBO J 1998; 17: 3878–3885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ruffolo SC, Breckenridge DG, Nguyen M, Goping IS, Gross A, Korsmeyer SJ et al. BID-dependent and BID-independent pathways for BAX insertion into mitochondria. Cell Death Differ 2000; 7: 1101–1108.

    Article  CAS  PubMed  Google Scholar 

  37. Weiss JN, Korge P, Honda HM, Ping P . Role of the mitochondrial permeability transition in myocardial disease. Circ Res 2003; 93: 292–301.

    Article  CAS  PubMed  Google Scholar 

  38. Boussif O, Lezoualc’h F, Zanta A, Mergny MD, Scherman D, Demeneix B et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci USA 1995; 92: 7297–7301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Urban-Klein B, Werth S, Abuharbeid S, Czubayko F, Aigner A . RNAi-mediated gene-targeting through systemic application of polyethylenimine (PEI)-complexed siRNA in vivo. Gene Therapy 2005; 12: 461–466.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q Ding.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, K., Ding, Q., Fang, Z. et al. Silencing of HIF-1α suppresses tumorigenicity of renal cell carcinoma through induction of apoptosis. Cancer Gene Ther 17, 212–222 (2010). https://doi.org/10.1038/cgt.2009.66

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2009.66

Keywords

Search

Quick links