Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Adult mice deficient in actinin–associated LIM-domain protein reveal a developmental pathway for right ventricular cardiomyopathy

Abstract

Although cytoskeletal mutations are known causes of genetically based forms of dilated cardiomyopathy, the pathways that link these defects with cardiomyopathy are unclear. Here we report that the α-actinin–associated LIM protein (ALP; Alp in mice) has an essential role in the embryonic development of the right ventricular (RV) chamber during its exposure to high biomechanical workloads in utero. Disruption of the gene encoding Alp (Alp) is associated with RV chamber dilation and dysfunction, directly implicating α-actinin–associated proteins in the onset of cardiomyopathy. In vitro assays showed that Alp directly enhances the capacity of α-actinin to cross-link actin filaments, indicating that the loss of Alp function contributes to destabilization of actin anchorage sites in cardiac muscle. Alp also colocalizes at the intercalated disc with α-actinin and γ-catenin, the latter being a known disease gene for human RV dysplasia. Taken together, these studies point to a novel developmental pathway for RV dilated cardiomyopathy via instability of α-actinin complexes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dynamic pattern of Alp expression in mouse heart.
Figure 2: Alp expression at various stages of mouse development.
Figure 3: Alp−/− embryos show predominant RV dilatation.
Figure 4: DCM in Alp−/− mice.
Figure 5: Alp alters cardiomyocyte cytoarchitecture and sarcomeric organization.
Figure 6: Localization of Alp in the adult mouse heart by immunostaining.
Figure 7: Alp enhances the ability of α-actinin to cross-link F-actin.

Similar content being viewed by others

References

  1. Hunter, J.J. & Chien, K.R. Signaling pathways for cardiac hypertrophy and failure. New Engl. J. Med. 341, 1276–1283 (1999).

    Article  CAS  Google Scholar 

  2. Chien, K.R. Stress pathways and heart failure. Cell 98, 555–558 (1999).

    Article  CAS  Google Scholar 

  3. Hirota, H. et al. Loss of a gp130 cardiac muscle cell survival pathway is a critical event in the onset of heart failure during biomechanical stress. Cell 97, 189–198 (1999).

    Article  CAS  Google Scholar 

  4. Minamisawa, S. et al. Chronic phospholamban-sarcoplasmic reticulum calcium ATPase interaction is the critical calcium cycling defect in dilated cardiomyopathy. Cell 99, 313–322 (1999).

    Article  CAS  Google Scholar 

  5. Miyamoto, M.I., et al. Adenoviral gene transfer of SERCA2a improves left-ventricular function in arotic-banded rats in transition to heart failure. Proc. Natl. Acad. Sci. USA 97, 793–798 (2000).

    Article  CAS  Google Scholar 

  6. Arber, S. et al. MLP-deficient mice exhibit a disruption of cardiac cytoarchitectural organization, dilated cardiomyopathy, and heart failure. Cell 88, 393–403 (1997).

    Article  CAS  Google Scholar 

  7. Coral-Vazquez, R. et al. Disruption of the sarcoglycan-sarcospan complex in vascular smooth muscle: a novel mechanism for cardiomyopathy and muscular dystrophy. Cell 98, 465–474 (1999).

    Article  CAS  Google Scholar 

  8. Olson, T.M., Michels, V.V., Thibodeau, S.N., Tai, Y.S. & Keating, M.T. Actin mutations in dilated cardiomyopathy, a heritable form of heart failure. Science 280, 750–752 (1998).

    Article  CAS  Google Scholar 

  9. Towbin, J.A. & Bowles, N.E. Genetic abnormalities responsible for dilated cardiomyopathy. Curr. Cardiol. Rep. 2, 475–480 (2000).

    Article  CAS  Google Scholar 

  10. Corrado, D. et al. Arrhythmogenic right ventricular dysplasia/cardiomyopathy: need for an international registry. Study Group on Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy of the Working Groups on Myocardial and Pericardial Disease and Arrhythmias of the European Society of Cardiology and of the Scientific Council on Cardiomyopathies of the World Heart Federation. Circulation 101, E101–106 (2000).

    Article  CAS  Google Scholar 

  11. Fontaine, G., Fontaliran, F. & Frank, R. Arrhythmogenic right ventricular cardiomyopathies: clinical forms and main differential diagnoses. Circulation 97, 1532–1535 (1998).

    Article  CAS  Google Scholar 

  12. McKoy, G. et al. Identification of a deletion in plakoglobin in arrhythmogenic right ventricular cardiomyopathy with palmoplantar keratoderma and woolly hair (Naxos disease). Lancet 355, 2119–2124 (2000).

    Article  CAS  Google Scholar 

  13. Xia, H., Winokur, S.T., Kuo, W.L., Altherr, M.R. & Bredt, D.S. Actinin–associated LIM protein: identification of a domain interaction between PDZ and spectrin-like repeat motifs. J. Cell Biol. 139, 507–515 (1997).

    Article  CAS  Google Scholar 

  14. Nieset, J.E. et al. Characterization of the interactions of α-catenin with α-actinin and β-catenin/plakoglobin. J. Cell Sci. 110, 1013–1022 (1997).

    CAS  PubMed  Google Scholar 

  15. Vallenius, T., Luukko, K. & Makela, T.P. CLP-36 PDZ-LIM protein associates with nonmuscle α-actinin-1 and α-actinin-4. J. Biol. Chem. 275, 11100–11105 (2000).

    Article  CAS  Google Scholar 

  16. Wang, H., Harrison-Shostak, D.C., Lemasters, J.J. & Herman, B. Cloning of a rat cDNA encoding a novel LIM domain protein with high homology to rat RIL. Gene 165, 267–271 (1995).

    Article  CAS  Google Scholar 

  17. Kiess, M. et al. Expression of ril, a novel LIM domain gene, is down-regulated in Hras-transformed cells and restored in phenotypic revertants. Oncogene 10, 61–68 (1995).

    CAS  PubMed  Google Scholar 

  18. Pomiès, P., Louis, H.A. & Beckerle, M.C. CRP1, a LIM domain protein implicated in muscle differentiation, interacts with α-actinin. J. Cell Biol. 139, 157–168 (1997).

    Article  Google Scholar 

  19. Pomiès, P., Macalma, T. & Beckerle, M.C. Purification and characterization of an α-actinin-binding PDZ-LIM protein that is up-regulated during muscle differentiation. J. Biol. Chem. 274, 29242–29250 (1999).

    Article  Google Scholar 

  20. Rockman, H.A. et al. Segregation of atrial-specific and inducible expression of an atrial natriuretic factor transgene in an in vivo murine model of cardiac hypertrophy. Proc. Natl. Acad. Sci. USA. 88, 8277–8281 (1991).

    Article  CAS  Google Scholar 

  21. Tanaka, N. et al. Transthoracic echocardiography in models of cardiac disease in the mouse. Circulation 94, 1109–1117 (1996).

    Article  CAS  Google Scholar 

  22. Fontaine, G. et al. Arrhythmogenic right ventricular dysplasia. Ann. Rev. Med. 50, 17–35 (1999).

    Article  CAS  Google Scholar 

  23. Lewis, J.E. et al. Cross-talk between adherens junctions and desmosomes depends on plakoglobin. J. Cell Biol. 136, 919–934 (1997).

    Article  CAS  Google Scholar 

  24. Cowin, P., Kapprell, H.P., Franke, W.W., Tamkun, J. & Hynes, R.O. Plakoglobin: a protein common to different kinds of intercellular adhering junctions. Cell 46, 1063–1073 (1986).

    Article  CAS  Google Scholar 

  25. Ruiz, P. et al. Targeted mutation of plakoglobin in mice reveals essential functions of desmosomes in the embryonic heart. J. Cell Biol. 135, 215–225 (1996).

    Article  CAS  Google Scholar 

  26. Knudsen, K.A., Soler A.P., Johnson, K.R., Wheelock, M.J. Interaction of α-actinin with the cadherin/catenin cell-cell adhesion complex via α-catenin. J. Cell Biol. 130, 67–77 (1995).

    Article  CAS  Google Scholar 

  27. Djinovic-Carugo, K., Young, P., Gautel, M. & Saraste, M. Structure of the α-actinin rod: molecular basis for cross-linking of actin filaments. Cell 98, 537–546 (1999).

    Article  CAS  Google Scholar 

  28. Blanchard, A., Ohanian, V. & Critchley, D. The structure and function of α-actinin. J. Muscle Res. Cell Motil. 10, 280–289 (1989).

    Article  CAS  Google Scholar 

  29. Meyer, R.K. & Aebi, U. Bundling of actin filaments by α-actinin depends on its molecular length. J. Cell Biol. 110, 2013–2024 (1990).

    Article  CAS  Google Scholar 

  30. Chien, K.R. Genomic circuits and the integrative biology of complex cardiac diseases. Nature 407, 227–232 (2000).

    Article  CAS  Google Scholar 

  31. Fontaine, G. et al. Fat in the heart. A feature unique to the human species? Observational reflections on an unsolved problem. Acta. Cardiol. 54, 189–194 (1999).

    CAS  PubMed  Google Scholar 

  32. Basso, C. et al. Arrhythmogenic right ventricular cardiomyopathy. Dysplasia, dystrophy, or myocarditis? Circulation 94, 983–991 (1996).

    Article  CAS  Google Scholar 

  33. Sutton, M.S., Gill, T., Plappert, T., Saltzman, D.H. & Doubilet, P. Assessment of right and left ventricular function in terms of force development with gestational age in the normal human fetus. Br. Heart. J. 66, 285–289 (1991).

    Article  CAS  Google Scholar 

  34. Murata, K. et al. The influence of coronary collateral flow on the assessment of myocardial perfusion by videodensitometry. Cardiovasc. Res. 33, 359–369 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Evans and J. Chen for helpful comments; N. Dalton and Y. Gu for technical help with echocardiography and right/left heart catheterization; and E. King for contributing to electron microscopic analysis. This work was supported by grants from the Muscular Dystrophy Association (M.C.B.), the NIH (M.C.B. and K.R.C.) and the Jean Le Ducq Foundation (K.R.C.). M.C.B. is an Investigator of the Huntsman Cancer Institute. K.R.C. is supported by an Endowed Chair from the American Heart Association (California Affiliate).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth R. Chien.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pashmforoush, M., Pomiès, P., Peterson, K. et al. Adult mice deficient in actinin–associated LIM-domain protein reveal a developmental pathway for right ventricular cardiomyopathy. Nat Med 7, 591–597 (2001). https://doi.org/10.1038/87920

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/87920

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing