Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Crystal structure of a small G protein in complex with the GTPase-activating protein rhoGAP

Abstract

Small G proteins transduce signals from plasma-membrane receptors to control a wide range of cellular functions1,2. These proteins are clustered into distinct families but all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of G proteins, which includes Cdc42Hs, activate effectors involved in the regulation of cytoskeleton formation, cell proliferation and the JNK signalling pathway3,4,5,6,7,8,9. G proteins generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GTPase-activating proteins (GAPs) that enhance the rate of GTP hydrolysis by up to 105times10,11. We report here the crystal structure of Cdc42Hs, with the non-hydrolysable GTP analogue GMPPNP, in complex with the GAP domain of p50rhoGAP at 2.7 å resolution. In the complex Cdc42Hs interacts, mainly through its switch I and II regions, with a shallow pocket on rhoGAP which is lined with conserved residues. Arg 85 of rhoGAP interacts with the P-loop of Cdc42Hs, but from biochemical data and by analogy with the G-protein subunit Giα1 (ref. 12), we propose that it adopts a different conformation during the catalytic cycle which enables it to stabilize the transition state of the GTP-hydrolysis reaction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 2: Electron density omit map for the bound GMPPNP·Mg.
Figure 1: a, The structure of the Cdc42Hs·GMPPNP/p50rhoGAP complex viewed along the protein–protein interface.
Figure 3: Comparison of the Cdc42Hs·GMPPNP/p50rhoGAP complex with the structure of transducin-α·GTPγS.

Similar content being viewed by others

References

  1. Bourne, H. R., Sanders, D. A. & McCormick, F. The GTPase superfamily: a conserved switch for diverse cell functions. Nature 348, 125–132 (1990).

    Article  ADS  CAS  Google Scholar 

  2. Bourne, H. R., Sanders, D. A. & McCormick, F. The GTPase superfamily: conserved structure and molecular mechanism. Nature 349, 117–127 (1991).

    Article  ADS  CAS  Google Scholar 

  3. Paterson, H. F. et al. Microinjection of recombinant p21rho induces rapid changes in cell morphology. J. Cell. Biol. 111, 1001–1007 (1990).

    Article  CAS  Google Scholar 

  4. Hall, A. The cellular functions of small GTP-binding proteins. Science 249, 635–640 (1990).

    Article  ADS  CAS  Google Scholar 

  5. Ridley, A. J. & Hall, A. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70, 389–399 (1992).

    Article  CAS  Google Scholar 

  6. Qiu, R. -G., Chen, J., Kirn, D., McCormick, F. & Symns, M. An essential role for Rac in Ras transformation. Nature 374, 457–459 (1995).

    Article  ADS  CAS  Google Scholar 

  7. Ridley, A. J. Rho: theme and variations. Curr. Biol. 6, 1256–1264 (1996).

    Article  CAS  Google Scholar 

  8. Coso, O. A. et al. The small GTP-binding proteins Rac1 and Cdc42 regulate the activity of the JNK/SAPK signaling pathway. Cell 81, 1137–1146 (1995).

    Article  CAS  Google Scholar 

  9. Minden, A., Lin, A., Claret, F. -X., Abo, A. & Karin, M. Selective activation of the JNK signaling cascade and c-Jun transcriptinal activity by the small GTPases Rac and Cdc42Hs. Cell 81, 1147–1157 (1995).

    Article  CAS  Google Scholar 

  10. Lancaster, C. A. et al. Characterization of rhoGAP. J. Biol. Chem. 269, 1137–1142 (1994).

    CAS  PubMed  Google Scholar 

  11. Lamarche, N. & Hall, A. GAPs for rho-related GTPases. Trends Genet. 10, 436–440 (1994).

    Article  CAS  Google Scholar 

  12. Coleman, D. E. et al. Structures of active conformations of Giα1and the mechanism of GTP hydrolysis. Science 265, 1405–1412 (1994).

    Article  ADS  CAS  Google Scholar 

  13. Pai, E. F. et al. Refined crystal structure of the triphosphate conformation of H-ras p21 at 1.35A resolution: implications for the mechanism of GTP hydrolysis. EMBO J. 9, 2351–2359 (1990).

    Article  CAS  Google Scholar 

  14. Schlichting, I. et al. Time-resolved X-ray crystallographic study of the conformational change in Ha-Ras p21 protein on GTP hydrolysis. Nature 345, 309–315 (1990).

    Article  ADS  CAS  Google Scholar 

  15. Prive, G. G. et al. X-ray crystal structures of transforming p21 ras mutants suggest a transition-state stabilization mechanism for GTP hydrolysis. Proc. Natl Acad. Sci. USA 89, 3649–3653 (1992).

    Article  ADS  CAS  Google Scholar 

  16. Hirshberg, M., Stockley, R. W., Dodson, G. & Webb, M. R. The crystal structure of human rac1, a member of the rho-family complexed with a GTP analogue. Nature Struct. Biol. 4, 147–152 (1997).

    Article  CAS  Google Scholar 

  17. Scheffzek, K., Lautwein, A., Kabsch, W., Ahmadian, M. R. & Wittinghoferr, A. Crystal structure of the GTPase-activating domain of human p120GAP and implications for the interaction with Ras. Nature 384, 591–596 (1996).

    Article  ADS  CAS  Google Scholar 

  18. Barrett, T. et al. The structure of the GTPase-activating domain from p50rhoGAP. Nature 385, 458–461 (1997).

    Article  ADS  CAS  Google Scholar 

  19. Noel, J. P., Hamm, H. E. & Sigler, P. B. The 2.2 å crystal structure of transducin-α complexed with GTP-γS. Nature 366, 654–663 (1993).

    Article  ADS  CAS  Google Scholar 

  20. Sondek, J., Lambright, D. G., Noel, J. P., Hamm, H. E. & Sigler, P. B. GTPase mechanism of G-proteins from the 1.7 å crystal structure of transducinα·GDP AlF44−. Nature 372, 276–279 (1994).

    Article  ADS  CAS  Google Scholar 

  21. Tesmer, J. J. G., Berman, D. M., Gilman, A. G. & Sprang, S. R. Structure of RGS4 bound to AlF44−-activated Giα1: Stabilization of the transition state for GTP hydrolysis. Cell 89, 251–261 (1997).

    Article  CAS  Google Scholar 

  22. Milburn, M. V. et al. Molecular switch for signal transduction: Structural differences between active and inactive forms of protooncogenic ras proteins. Science 247, 939–945 (1990).

    Article  ADS  CAS  Google Scholar 

  23. Goody, R. S. et al. Studies on the structure and mechanism of H-ras p21. Phil. Trans. R. Soc. Lond. B 336, 3–11 (1992).

    Article  ADS  CAS  Google Scholar 

  24. Mittal, R., Ahmadian, M. R., Goody, R. S. & Wittinghoferr, A. Formation of a transition-state analog of Ras GTPase reaction by Ras GDP, tetrafluoroaluminate, and GTPase-activating proteins. Science 273, 115–117 (1996).

    Article  ADS  CAS  Google Scholar 

  25. Smith, D. B. & Johnson, K. S. Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene 67, 31–40 (1988).

    Article  CAS  Google Scholar 

  26. Otwinowski, Z. & Minor, W. Data Collection and Processing (eds Sawyer, L., Isaacs, N. & Bailey, S.) 556–562 (SERC Daresbury Laboratory, Warrington, 1993).

    Google Scholar 

  27. CCP4 The CCP4 suite: programs for protein crystallographyActa Crystallogr. D 50 760–763 (1994).

  28. Jones, T. A., Zhou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  29. Kraulis, P. J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

Download references

Acknowledgements

We thank M. Hirshberg for making coordinates of Rac1 available before general release, E. Skordalakes for assistance with data collection, A. Hall for the gift of rhoA and rhoGAP expression systems, E. Manser and L. Lim for construction and characterization of the Cdc42HsΔ7 expression system, G. Dodson and D. Trentham for critical reading of this manuscript, and A. Savoia (Trieste) and A. Thompson (ESRF) for beamline assistance. D.O. and E.L. Thank the European commission for financial support and the BBSRC and Welcome Trust for support to the Cambridge Centre for Molecular Recognition. K.R. is funded by an EEC TMR fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven J. Gamblin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rittinger, K., Walker, P., Eccleston, J. et al. Crystal structure of a small G protein in complex with the GTPase-activating protein rhoGAP. Nature 388, 693–697 (1997). https://doi.org/10.1038/41805

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/41805

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing