Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Drosophila Pin1 prolyl isomerase Dodo is a MAP kinase signal responder during oogenesis

Abstract

The mammalian cis–trans prolyl isomerase Pin1 and its yeast orthologue Ess1/Ptf1 have been implicated in cell cycle control but a correlation between biochemical and physiological functions has not been established conclusively. Pin1 targets the proline residue carboxy-terminal to the phosphorylated threonine or serine residue, which constitutes part of the phosphorylated mitogen-activated protein kinase (MAPK) site PXpT/SP. Here we show that the Drosophila Pin1 homologue, the Dodo protein, is involved in dorsoventral patterning of the follicular epithelium in the egg chamber. Its function is to facilitate the degradation of transcription factor CF2, which requires, a priori, activated epidermal growth factor receptor–MAPK signalling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genomic location of dodo.
Figure 2: Egg chamber defects in the dodo deficiency mutant.
Figure 3: Dodo protein expression in the egg chamber.
Figure 4: Interaction between Dodo and phosphorylated CF2 protein.
Figure 5: The dodo function exacerbates D-raf gain-of-function mutant phenotypes.

Similar content being viewed by others

References

  1. Hunter, T. Prolyl isomerases and nuclear function. Cell 92, 141–143 (1998).

    Article  Google Scholar 

  2. Maleszka, R., Lupas, A., Hanes, S. D. & Miklos, G. L. The dodo gene family encodes a novel protein involved in signal transduction and protein folding. Gene 203, 89–93 (1997).

    Article  CAS  Google Scholar 

  3. Lu, K. P. Phosphorylation-dependent prolyl isomerisation: a novel cell cycle regulatory mechanism. Prog. Cell Cycle Res. 4, 83–96 (2000).

    Article  CAS  Google Scholar 

  4. Lu, K. P., Hanes, S. D. & Hunter, T. A human peptidyl-prolyl isomerase essential for regulation of mitosis. Nature 380, 544–547 (1996).

    Article  CAS  Google Scholar 

  5. Hanes, S. D., Shank, P. R. & Bostian, K. A. Sequence and mutational analysis of ESS1, a gene essential for growth in Saccharomyces cerevisiae. Yeast 5, 55–72 (1989).

    Article  CAS  Google Scholar 

  6. Crenshaw, D. G., Yang, J., Means, A. R. & Kornbluth, S. The mitotic peptidyl-prolyl isomerase, Pin1, interacts with Cdc25 and Plx1. EMBO J. 17, 1315–1327 (1998).

    Article  CAS  Google Scholar 

  7. Shen, M., Stukenberg, P. T., Kirschner, M. W. & Lu, K. P. The essential mitotic peptidyl-prolyl isomerase Pin1 binds and regulates mitosis-specific phosphoproteins. Genes Dev. 12, 706–720 (1998).

    Article  CAS  Google Scholar 

  8. Ranganathan, R., Lu, K. P., Hunter, T. & Noel, J. P. Structural and functional analysis of the mitotic rotamase Pin1 suggests substrate recognition is phosphorylation dependent. Cell 89, 875–886 (1997).

    Article  CAS  Google Scholar 

  9. Spradling, A. C. in The Development of Drosophila melanogaster. (eds Mate, M. & Martinez-Arias, A.) 1–70 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1993).

    Google Scholar 

  10. Gonzalez-Reyes, A., Elliot, H. & St. Johnston, D. Polarization of both major body axes in Drosophila by gurken-torpedo signalling. Nature 375, 654–658 (1995).

    Article  CAS  Google Scholar 

  11. Roth, S., Newman-Silberberg, F. S., Barcelo, G. & Schüpbach, T. Cornichon and the EGF receptor signaling process are necessary for both anterior–posterior and dorsal–ventral pattern formation in Drosophila. Cell 81, 967–978 (1995).

    Article  CAS  Google Scholar 

  12. Ray, R. P. & Schüpbach, T. Intercellular signaling and the polarization of body axes during Drosophila oogenesis. Genes Dev. 10, 1711–1723 (1996).

    Article  CAS  Google Scholar 

  13. Mantrova, E. Yu. & Hsu, T. Down-regulation of transcription factor CF2 by the Drosophila Ras/MAP kinase signaling in oogenesis: cytoplasmic retention and degradation. Genes Dev. 12, 1166–1175 (1998).

    Article  CAS  Google Scholar 

  14. Hsu, T., Bagni, C., Sutherland, J. D. & Kafatos, F. C. The transcription factor CF2 is a mediator of EGF-R-activated dorsoventral patterning in Drosophila oogenesis. Genes Dev. 10, 1411–1421 (1996).

    Article  CAS  Google Scholar 

  15. Wasserman, J. & Freeman, M. An autoregulatory cascade of EGF receptor signaling patterns the Drosophila egg. Cell 95, 355–364 (1998).

    Article  CAS  Google Scholar 

  16. Sapir, A, Schweitzer, R. & Shilo B.-Z. Sequential activation of the EGF receptor pathway during Drosophila oogenesis establishes the dorsoventral axis. Development 125, 191–200 (1998).

    CAS  PubMed  Google Scholar 

  17. Maleszka, R., Hanes, S. D., Hackett, R. L., de Couet, H. G. & Miklos, G. L. The Drosophila melanogaster dodo (dod) gene, conserved in humans, is functionally interchangeable with the ESS1 cell division gene of Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 93, 447–451 (1996).

    Article  CAS  Google Scholar 

  18. Fujimori, F., Takahashi, K., Uchida, C. & Uchida, T. Mice lacking Pin1 develop normally, but are defective in entering cell cycle from G(0) arrest. Biochem. Biophys. Res. Commun. 265, 658–663 (1999).

    Article  CAS  Google Scholar 

  19. Maleszka, R., de Couet, H. G. & Miklos, G. L. Data transferability from model organisms to human beings: insights from the functional genomics of the flightless region of Drosophila. Proc. Natl Acad. Sci. USA 95, 3731–3736 (1998).

    Article  CAS  Google Scholar 

  20. Rebay, I. & Rubin, G. M. Yan functions as a general inhibitor of differentiation and is negatively regulated by activation of the Ras1/MAPK pathway. Cell 81, 857–866 (1995).

    Article  CAS  Google Scholar 

  21. Rørth, P., Szabo, K. & Texido, G. The level of C/EBP protein is critical for cell migration during Drosophila oogenesis and is tightly controlled by regulated degradation. Mol. Cell. 6, 23–30 (2000).

    Article  Google Scholar 

  22. Brand, A. H. & Perrimon, N. Raf acts downstream of the EGF receptor to determine dorsoventral polarity during Drosophila oogenesis. Genes Dev. 8, 629–639 (1994).

    Article  CAS  Google Scholar 

  23. Neuman-Silberberg, F. S. & Schüpbach, T. The Drosophila dorsoventral patterning gene gurken produces a dorsally localized RNA and encodes a TGF-α-like protein. Cell 75, 165–174 (1993).

    Article  CAS  Google Scholar 

  24. Zhou, Z. X., et al. Pin1-dependent prolyl isomerisation regulates dephosphorylation of Cdc25C and tau proteins. Mol. Cell. 6, 873–883 (2000).

    Article  CAS  Google Scholar 

  25. Hani, J., Stumpf, G. & Domdey, H. PTF1 encodes an essential protein in Saccharomyces cerevisiae, which shows strong homology with a new putative family of PPIases. FEBS Lett. 365, 198–202 (1995).

    Article  CAS  Google Scholar 

  26. Wu, X., et al. The Ess1 prolyl isomerase is linked to chromatin remodeling complexes and the general transcription machinery. EMBO J. 19, 3727–3738 (2000).

    Article  CAS  Google Scholar 

  27. Arèvalo-Rodriguez, M., Cardenas, M. E., Wu, X., Hanes, S. D. & Heitman, J. Cyclophilin A and the Ess1 interact with and regulate silencing by the Sin3–Rpd3 histone deacetylase. EMBO J. 19, 3739–3749 (2000).

    Article  Google Scholar 

  28. Perrimon, N., Smouse, D. & Miklos, G. L. Developmental genetics of loci at the base of the X chromosome of Drosophila melanogaster. Genetics (Princeton) 121, 313–331 (1989).

    CAS  Google Scholar 

  29. Miklos, G. L. & de Couet, H. G. The mutations previously designated as flightless-I3, flightless-O2 and standby are members of the W-2 lethal complementation group at the base of the X-chromosome of Drosophila melanogaster. J. Neurogenet. 6, 133–151 (1990).

    Article  CAS  Google Scholar 

  30. Spradling, A. in Drosophila, a Practical Approach (ed. Roberts, D. B.) 175–198 (IRL Press, New York, 1986).

    Google Scholar 

Download references

Acknowledgements

We thank D. Spyropoulos, M. Trojanowska and D. Watson for valuable comments on the manuscript; N. Perrimon for providing the hs-D-rafgof flies; G.L.G. Miklos for the gift of the flightless-I transgenic stocks; and X. Zhang of the Medical University of South Carolina Antibody Production Facility for producing antisera. This work is supported by a grant from the National Institutes of Health to T.H. and a grant from the American Heart Association to H.G.d.G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tien Hsu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsu, T., McRackan, D., Vincent, T. et al. Drosophila Pin1 prolyl isomerase Dodo is a MAP kinase signal responder during oogenesis. Nat Cell Biol 3, 538–543 (2001). https://doi.org/10.1038/35078508

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35078508

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing