Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

PAN, the proteasome-activating nucleotidase from archaebacteria, is a protein-unfolding molecular chaperone

Abstract

The proteasome-activating nucleotidase (PAN) from Methanococcus jannaschii is a complex of relative molecular mass 650,000 that is homologous to the ATPases in the eukaryotic 26S proteasome. When mixed with 20S archaeal proteasomes and ATP, PAN stimulates protein degradation. Here we show that PAN reduces aggregation of denatured proteins and enhances their refolding. These processes do not require ATP hydrolysis, although ATP binding enhances the ability of PAN to prevent aggregation. PAN also catalyses the unfolding of the green fluorescent protein with an 11-residue ssrA extension at its carboxy terminus (GFP11). This unfolding requires ATP hydrolysis, and is linked to GFP11 degradation when 20S proteasomes are also present. This unfolding activity seems to be essential for ATP-dependent proteolysis, although PAN may function by itself as a molecular chaperone.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PAN reduces protein aggregation.
Figure 2: PAN enhances refolding of denatured GDH.
Figure 3: The ATP- and AMP-PNP-bound forms of PAN are more effective in preventing protein aggregation.
Figure 4: Effect of addition of 20S proteasomes on the ability of PAN to prevent protein aggregation.
Figure 5: PAN catalyses ATP-dependent unfolding of GFP11.
Figure 6: PAN stimulates ATP-dependent degradation of GFP11 by 20S proteasomes.

Similar content being viewed by others

References

  1. Goldberg, A. L. The mechanism and functions of ATP-dependent proteases in bacterial and animal cells. Eur. J. Biochem. 203, 9–23 (1992).

    Article  CAS  Google Scholar 

  2. Gottesman, S. Proteases and their targets in Escherichia coli. Annu. Rev. Genet. 30, 465–506 (1996).

    Article  CAS  Google Scholar 

  3. Coux, O., Tanaka, K. & Goldberg, A. L. Structure and functions of the 20S and 26S proteasomes. Annu. Rev. Biochem. 65, 801–847 (1996).

    Article  CAS  Google Scholar 

  4. Voges, D., Zwickl, P. & Baumeister, W. The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu. Rev. Biochem. 68, 1015–1068 (1999).

    Article  CAS  Google Scholar 

  5. Zwickl, P., Goldberg, A. L. & Baumeister, W. in Proteasomes: the World of Regulatory Proteolysis (eds Hilt, W. & Wolf, D.) (Landes Bioscience, Austin, Texas, in the press).

  6. Lowe, J. et al. Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 A resolution [see comments]. Science 268, 533–539 (1995).

    Article  CAS  Google Scholar 

  7. Akopian, T. N., Kisselev, A. F. & Goldberg, A. L. Processive degradation of proteins and other catalytic properties of the proteasome from Thermoplasma acidophilum. J. Biol. Chem. 272, 1791–1798 (1997).

    Article  CAS  Google Scholar 

  8. Kisselev, A. F., Akopian, T. N. & Goldberg, A. L. Range of sizes of peptide products generated during degradation of different proteins by archaeal proteasomes. J. Biol. Chem. 273, 1982–1989 (1998).

    Article  CAS  Google Scholar 

  9. Zwickl, P., Ng, D., Woo, K. M., Klenk, H. P. & Goldberg, A. L. An archaebacterial ATPase, homologous to ATPases in the eukaryotic 26 S proteasome, activates protein breakdown by 20 S proteasomes. J. Biol. Chem. 274, 26008–26014 (1999).

    Article  CAS  Google Scholar 

  10. Ng, D., Zwickl, P. & Goldberg, A. L. ATP hydrolysis by the PAN complex is coupled to the activation of protein degradation by arch`eal 20S proteasomes (submitted).

  11. Larsen, C. N. & Finley, D. Protein translocation channels in the proteasome and other proteases [comment]. Cell 91, 431–434 (1997).

    Article  CAS  Google Scholar 

  12. Baumeister, W., Walz, J., Zuhl, F. & Seemuller, E. The proteasome: paradigm of a self-compartmentalizing protease. Cell 92, 367–380 (1998).

    Article  CAS  Google Scholar 

  13. Wickner, S. et al. A molecular chaperone, ClpA, functions like DnaK and DnaJ. Proc. Natl Acad. Sci. USA 91, 12218–12222 (1994).

    Article  CAS  Google Scholar 

  14. Levchenko, I., Luo, L. & Baker, T. A. Disassembly of the Mu transposase tetramer by the ClpX chaperone. Genes Dev. 9, 2399–2408 (1995).

    Article  CAS  Google Scholar 

  15. Wawrzynow, A. et al. The ClpX heat-shock protein of Escherichia coli, the ATP-dependent substrate specificity component of the ClpP–ClpX protease, is a novel molecular chaperone. EMBO J. 14, 1867–1877 (1995).

    Article  CAS  Google Scholar 

  16. Weber-Ban, E. U., Reid, B. G., Miranker, A. D. & Horwich, A. L. Global unfolding of a substrate protein by the Hsp100 chaperone ClpA [see comments]. Nature 401, 90–93 (1999).

    Article  CAS  Google Scholar 

  17. Glickman, M. H., Rubin, D. M., Fried, V. A. & Finley, D. The regulatory particle of the Saccharomyces cerevisiae proteasome. Mol. Cell. Biol. 18, 3149–3162 (1998).

    Article  CAS  Google Scholar 

  18. Glickman, M. H. et al. A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3. Cell 94, 615–623 (1998).

    Article  CAS  Google Scholar 

  19. Braun, B. C. et al. The base of the proteasome regulatory particle exhibits chaperone-like activity. Nature Cell Biol. 1, 221–226 (1999).

    Article  CAS  Google Scholar 

  20. Strickland, E., Hakala, K., Thomas, P. J. & DeMartino, G. Recognition of misfolding protein by PA700, the regulatory subcomplex of the 26S proteasome. J. Biol. Chem. 275, 5565–5572 (2000).

    Article  CAS  Google Scholar 

  21. Bukau, B. & Horwich, A. L. The Hsp70 and Hsp60 chaperone machines. Cell 92, 351–366 (1998).

    Article  CAS  Google Scholar 

  22. Tandon, S. & Horowitz, P. Detergent-assisted refolding of guanidinium chloride-denatured rhodanese. The effect of lauryl maltoside. J. Biol. Chem. 261, 15615–15618 (1986).

    CAS  PubMed  Google Scholar 

  23. Furutani, M., Iida, T., Yoshida, T. & Maruyama, T. Group II chaperonin in a thermophilic methanogen, Methanococcus thermolithotrophicus. Chaperone activity and filament-forming ability. J. Biol. Chem. 273, 28399–28407 (1998).

    Article  CAS  Google Scholar 

  24. Gottesman, S., Roche, E., Zhou, Y. & Sauer, R. T. The ClpXP and ClpAP proteases degrade proteins with carboxy-terminal peptide tails added by the SsrA-tagging system. Genes Dev. 12, 1338–1347 (1998).

    Article  CAS  Google Scholar 

  25. Herman, C., Thevenet, D., Bouloc, P., Walker, G. C. & D'Ari, R. Degradation of carboxy-terminal-tagged cytoplasmic proteins by the Escherichia coli protease HflB (FtsH). Genes Dev. 12, 1348–1355 (1998).

    Article  CAS  Google Scholar 

  26. Keiler, K. C., Waller, P. R. & Sauer, R. T. Role of a peptide tagging system in degradation of proteins synthesized from damaged messenger RNA [see comments]. Science 271, 990–993 (1996).

    Article  CAS  Google Scholar 

  27. Horwich, A. L., Weber-Ban, E. U. & Finley, D. Chaperone rings in protein folding and degradation. Proc. Natl Acad. Sci. USA 96, 11033–11040 (1999).

    Article  CAS  Google Scholar 

  28. Williams, K. P. The tmRNA website. Nucleic Acids Res. 28, 168 (2000).

    Article  CAS  Google Scholar 

  29. Leonhard, K., Stiegler, A., Neupert, W. & Langer, T. Chaperone-like activity of the AAA domain of the yeast Yme1 AAA protease. Nature 398, 348–351 (1999).

    Article  CAS  Google Scholar 

  30. Hoskins, J. R., Pak, M., Maurizi, M. R. & Wickner, S. The role of the ClpA chaperone in proteolysis by ClpAP. Proc. Natl Acad. Sci. USA 95, 12135–12140 (1998).

    Article  CAS  Google Scholar 

  31. Seemuller, E. et al. Proteasome from Thermoplasma acidophilum: a threonine protease [see comments]. Science 268, 579–582 (1995).

    Article  CAS  Google Scholar 

  32. Smith, L. D., Budgen, N., Bungard, S. J., Danson, M. J. & Hough, D. W. Purification and characterization of glucose dehydrogenase from the thermoacidophilic archaebacterium Thermoplasma acidophilum. Biochem. J. 261, 973–977 (1989).

    Article  CAS  Google Scholar 

  33. Hoskins, J. R., Singh, S. K., Maurizi, M. R. & Wickner, S. Protein binding and unfolding by the chaperone ClpA and degredation by the protease ClpAP. Proc. Natl Sci. USA 97, 8892–8897 (2000)

    Article  CAS  Google Scholar 

  34. Kim, Y-I., Burton, R.E., Burton, B. M., Sauer, R. T. & Baker, T. Dynamics of substrate denaturation and translocation by the ClpXP degradation machine. Mol. Cell 5, 639–648 (2000).

    Article  CAS  Google Scholar 

  35. Singh, S.K. Grimaud, R., Hoskins, J. R., Widaner, S. & Maurizi, M. R. Unfolding and internalization of proteins by the ATP-dependent proteases ClpXP and ClpAP. Proc. Natl Acad. Sci. USA 97, 8898–8903 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. L. Horwich for the GFP11 expression plasmid, P. Silver for native GFP expression plasmid, and A. Kisselev and A. Navon for the purified 20S proteasome. We also thank members of our laboratory for critical reading of the manuscript. This work was supported by research grants from the National Institutes of Health (to A.L.G.; GM46147 and GM51923) and by postdoctoral fellowships from Association pour la Recherche contre le Cancer and Human Frontier Science Program Organization (to N.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfred L. Goldberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benaroudj, N., Goldberg, A. PAN, the proteasome-activating nucleotidase from archaebacteria, is a protein-unfolding molecular chaperone. Nat Cell Biol 2, 833–839 (2000). https://doi.org/10.1038/35041081

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35041081

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing