Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Crystal structure of enolase indicates that enolase and pyruvate kinase evolved from a common ancestor

Abstract

Enolase or 2-phospho-D-glycerate hydrolase catalyses the dehydration of 2-phosphoglycerate to phosphoenolpyruvate, which in turn is converted by pyruvate kinase to pyruvate. We describe here the crystallographic determination of the structure of yeast enolase at high resolution (2.25 Å) and an analysis of the structural homology between enolase, pyruvate kinase and triose phosphate isomerase. Each of the two subunits of enolase forms two distinctive domains. The larger domain (residues 143–420) is a regular 8-fold β/α-barrel, as first found in triose phosphate isomerase, and later in pyruvate kinase and 11 other functionally different enzymes. An analysis of the molecular geometries of enolase and pyruvate kinase based on the roughly 8-fold symmetry of the barrel showed a structural homology better than expected for proteins related by convergent evolution. We argue that enolase and pyruvate kinase have evolved from a common ancestral multifunctional enzyme which could process phosphoenolpyruvate in both directions along the glycolytic pathway. There is structural and sequence evidence that muconate lactonizing enzyme later evolved from enolase.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lebioda, L. & Brewer, J. M. J. molec. Biol. 180, 213–215 (1984).

    Article  CAS  Google Scholar 

  2. Wang, B.-C. Meth. Enzym. 115, 90–111 (1985).

    Article  CAS  Google Scholar 

  3. Chin, C. C. Q., Brewer, J. M. & Wold, F. J. biol. Chem. 256, 1377–1384 (1981).

    CAS  PubMed  Google Scholar 

  4. Holland, M. J., Holland, J. P., Thill, G. P. & Jackson, K. A. J. biol. Chem. 256, 1385–1395 (1981).

    CAS  PubMed  Google Scholar 

  5. Brewer, J. M. Crit. Rev. Biochem. 11, 209–254 (1981).

    Article  CAS  Google Scholar 

  6. Elliott, J. I. & Brewer, J. M. Arch. Biochem. Biophys. 192, 203–213 (1979).

    Article  CAS  Google Scholar 

  7. Banner, D. W. et al. Nature 255, 609–614 (1975).

    Article  ADS  CAS  Google Scholar 

  8. Stuart, D. I., Levine, M., Muirhead, H. & Stammers, D. K. J. molec. Biol. 134, 109–142 (1979).

    Article  CAS  Google Scholar 

  9. Mavridis, J. M., Hatada, M. H., Tulinsky, A. & Lebioda, L. J. molec. Biol. 162, 419–444 (1982).

    Article  CAS  Google Scholar 

  10. Sygusch, J., Beaudry, D. & Allaire, M. Proc. natn. Acad. Sci. U.S.A. 84, 7846–7850 (1987).

    Article  ADS  CAS  Google Scholar 

  11. Matsuura, Y., Kusunoki, M., Harada, W. & Kakudo, M. J. Biochem. 95, 697–702 (1984).

    Article  CAS  Google Scholar 

  12. Carrell, H. L., Rubin, B. H., Hurley, T. J. & Glusker, J. P. J. biol. Chem. 259, 3230–3236 (1984).

    CAS  PubMed  Google Scholar 

  13. Lindqvist, Y. & Brändén, C.-I. Proc. natn. Acad. Sci. U.S.A. 82, 6855–6859 (1985).

    Article  ADS  CAS  Google Scholar 

  14. Schneider, G., Lindqvist, Y., Brändén, C.-I. & Lorimer, G. EMBO J 5, 3409–3415 (1986).

    Article  CAS  Google Scholar 

  15. Goldman, A., Ollis, D. L. & Steitz, T. A. J. molec. Biol. 194, 143–153 (1987).

    Article  CAS  Google Scholar 

  16. Hyde, C. C., Padlan, E. A., Ahmed, S. A., Miles, E. W. & Davies, D. R. Fedn Proc. 46, 2215 (1987).

    Google Scholar 

  17. Lim, L. W. et al. J. biol. Chem. 261, 15140–15146 (1986).

    CAS  PubMed  Google Scholar 

  18. Xia, Z. X. et al. Proc. natn. Acad. Sci. U.S.A. 84, 2629–2633 (1987).

    Article  ADS  CAS  Google Scholar 

  19. Priestle, J. P. et al. Proc. natn. Acad. Sci. U.S.A. 84, 5690–5694 (1987).

    Article  ADS  CAS  Google Scholar 

  20. Rossmann, M. G. Phil. Trans. R. Soc. B293, 191–203 (1981).

    Article  Google Scholar 

  21. Lebioda, L., Hatada, M. H., Tulinsky, A. & Mavridis, I. M. J. molec. Biol. 162, 445–458 (1982).

    Article  CAS  Google Scholar 

  22. Muirhead, H. Trends biochem. Sci. 8, 326–330 (1983).

    Article  CAS  Google Scholar 

  23. Fothergill-Gilmore, L. A. in Multidomain Proteins-Structure and Evolution (ed. Hardie, D. G. & Coggins, J. R.) 85–174 (Elseiver, Amsterdam, 1986).

    Google Scholar 

  24. Schulz, G. E. Angew. Chem. 20, 143–151 (1981).

    Article  Google Scholar 

  25. Yeh, W. K. & Ornston, L. N. Proc. natn. Acad. Sci. U.S.A. 77, 5365–5369 (1980).

    Article  ADS  CAS  Google Scholar 

  26. Rose, I. A. Meth. Enzym. 87, 84–97 (1982).

    Article  CAS  Google Scholar 

  27. Horowitz, N. H. Proc. natn. Acad. Sci. U.S.A. 31, 153–156 (1945).

    Article  ADS  CAS  Google Scholar 

  28. Horowitz, N. H. in Evolving Genes and Proteins (ed. Bryson, V. & Vogel, H. J.) 15–26 (Academic, New York, 1965).

    Book  Google Scholar 

  29. Rossmann, M. G. & Argos, P. J. biol. Chem. 250, 7525–7532 (1975).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lebioda, L., Stec, B. Crystal structure of enolase indicates that enolase and pyruvate kinase evolved from a common ancestor. Nature 333, 683–686 (1988). https://doi.org/10.1038/333683a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/333683a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing