Skip to main content
Log in

Mitochondria and the Bcl-2 family proteins in apoptosis signaling pathways

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Two main intracellular apoptosis cascades, the receptor and the mitochondria pathway, have been identified. The mitochondrial pathway is controlled by the Bcl-2 proteins. This protein family contains members with either pro- or anti-apoptotic activity. When activated the pro-apoptotic multidomain proteins permeabilized the outer mitochondrial membrane, resulting in the release of proteins from the intermembrane space. Several proteins, including cytochrome c, Smac/DIABLO, HtrA2/Omi, endonuclease G and AIF, normally sequestered in the mitochondria induce or promote apoptosis once released into the cytosol. Although, apoptosis is an essential physiological process in multicellular organisms it is also involved in a wide range of pathological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schmitz I, Kirchhoff S, Krammer PH: Regulation of death receptor-mediated apoptosis pathways. Int J Biochem Cell Biol 32: 1123–1136, 2000

    Article  PubMed  Google Scholar 

  2. Varfolomeev EE, Schuchmann M, Luria V, Chiannilkulchai N, Beckmann JS, Mett IL, Rebrikov D, Brodianski VM, Kemper OC, Kollet O, Lapidot T, Soffer D, Sobe T, Avraham KB, Goncharov T, Holtmann H, Lonai P, Wallach D: Targeted disruption of the mouse Caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apo1, and DR3 and is lethal prenatally. Immunity 9: 267–276, 1998

    Article  PubMed  Google Scholar 

  3. Lassus P, Opitz-Araya X, Lazebnik Y: Requirement for caspase-2 in stress-induced apoptosis before mitochondrial permeabilization. Science 297: 1352–1354, 2002

    Article  PubMed  Google Scholar 

  4. Li H, Zhu H, Xu CJ, Yuan J: Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94: 491–501, 1998

    Article  PubMed  Google Scholar 

  5. Beutner G, Ruck A, Riede B, Brdiczka D: Complexes between porin, hexokinase, mitochondrial creatine kinase and adenylate translocator display properties of the permeability transition pore. Implication for regulation of permeability transition by the kinases. Biochim Biophys Acta 1368: 7–18, 1998

    PubMed  Google Scholar 

  6. Crompton M, Virji S, Doyle V, Johnson N, Ward JM: The mitochondrial permeability transition pore. Biochem Soc Symp 66: 167–179, 1999

    PubMed  Google Scholar 

  7. Newmeyer DD, Farschon DM, Reed JC: Cell-free apoptosis in Xenopus egg extracts: Inhibition by Bcl-2 and requirement for an organelle fraction enriched in mitochondria. Cell 79: 353–364, 1994

    Article  Google Scholar 

  8. Liu X, Kim CN, Yang J, Jemmerson R, Wang X: Induction of apoptotic program in cell-free extracts: Requirement for dATP and cytochrome c. Cell 86: 147–157, 1996

    Article  PubMed  Google Scholar 

  9. Tsujimoto Y, Cossman J, Jaffe E, Croce CM: Involvement of the bcl-2 gene in human follicular lymphoma. Science 228: 1440–1443, 1985

    PubMed  Google Scholar 

  10. Hengartner MO, Horvitz HR: C. elegans cell survival gene ced-9 encodes a functional homolog of the mammalian proto-oncogene bcl-2. Cell 76: 665–676, 1994

    Article  PubMed  Google Scholar 

  11. Oltvai ZN, Milliman CL, Korsmeyer SJ: Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74: 609–619, 1993

    PubMed  Google Scholar 

  12. Yin XM, Oltvai ZN, Korsmeyer SJ: BH1 and BH2 domains of Bcl-2 are required for inhibition of apoptosis and heterodimerization with Bax. Nature 369: 321–323, 1994

    PubMed  Google Scholar 

  13. Hirotani M, Zhang Y, Fujita N, Naito M, Tsuruo T: NH2-terminal BH4 domain of Bcl-2 is functional for heterodimerization with Bax and inhibition of apoptosis. J Biol Chem 274: 20415–20420, 1999

    Article  PubMed  Google Scholar 

  14. Chittenden T, Flemington C, Houghton AB, Ebb RG, Gallo GJ, Elangovan B, Chinnadurai G, Lutz RJ: A conserved domain in Bak, distinct from BH1 and BH2, mediates cell death and protein binding functions. EMBO J 14: 5589–5596, 1995

    PubMed  Google Scholar 

  15. Hunter JJ, Parslow TG: A peptide sequence from Bax that converts Bcl-2 into an activator of apoptosis. J Biol Chem 271: 8521–8524, 1996

    Article  PubMed  Google Scholar 

  16. Krajewski S, Tanaka S, Takayama S, Schibler MJ, Fenton W, Reed JC: Investigation of the subcellular distribution of the bcl-2 oncoprotein: residence in the nuclear envelope, endoplasmic reticulum, and outer mitochondrial membranes. Cancer Res 53: 4701–4714, 1993

    PubMed  Google Scholar 

  17. Hsu YT, Wolter KG, Youle RJ: Cytosol-to-membrane redistribution of Bax and Bcl-X(L) during apoptosis. Proc Natl Acad Sci USA 94: 3668–3672, 1997

    Article  PubMed  Google Scholar 

  18. Eskes R, Desagher S, Antonsson B, Martinou JC: Bid induces the oligomerization and insertion of Bax into the outer mitochondrial membrane. Mol Cell Biol 20: 929–935, 2000

    Article  PubMed  Google Scholar 

  19. Hsu YT, Youle RJ: Bax in murine thymus is a soluble monomeric protein that displays differential detergent-induced conformations. J Biol Chem 273: 10777–10783, 1998

    Article  PubMed  Google Scholar 

  20. Goping IS, Gross A, Lavoie JN, Nguyen M, Jemmerson R, Roth K, Korsmeyer SJ, Shore GC: Regulated targeting of BAX to mitochondria. J Cell Biol 143: 207–215, 1998

    Article  PubMed  Google Scholar 

  21. Wolter KG, Hsu YT, Smith CL, Nechushtan A, Xi XG, Youle RJ: Movement of Bax from the cytosol to mitochondria during apoptosis. J Cell Biol 139: 1281–1292, 1997

    Article  PubMed  Google Scholar 

  22. Antonsson B, Montessuit S, Sanchez B, Martinou JC: Bax is present as a high molecular weight oligomer/complex in the mitochondrial membrane of apoptotic cells. J Biol Chem 276: 11615–11623, 2001

    Article  PubMed  Google Scholar 

  23. Zha J, Harada H, Osipov K, Jockel J, Waksman G, Korsmeyer SJ: BH3 domain of BAD is required for heterodimerization with BCL-XL and pro-apoptotic activity. J Biol Chem 272: 24101–24104, 1997

    Article  PubMed  Google Scholar 

  24. Muchmore SW, Sattler M, Liang H, Meadows RP, Harlan JE, Yoon HS, Nettesheim D, Chang BS, Thompson CB, Wong SL, Ng SL, Fesik SW: X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death. Nature 381: 335–341, 1996

    Article  PubMed  Google Scholar 

  25. McDonnell JM, Fushman D, Milliman CL, Korsmeyer SJ, Cowburn D: Solution structure of the proapoptotic molecule BID: A structural basis for apoptotic agonists and antagonists. Cell 96: 625–634, 1999

    Article  PubMed  Google Scholar 

  26. Chou JJ, Li H, Salvesen GS, Yuan J, Wagner G: Solution structure of BID, an intracellular amplifier of apoptotic signaling. Cell 96: 615–624, 1999

    Article  PubMed  Google Scholar 

  27. Suzuki M, Youle RJ, Tjandra N: Structure of Bax: Coregulation of dimer formation and intracellular localization. Cell 103: 645–654, 2000

    PubMed  Google Scholar 

  28. Petros AM, Medek A, Nettesheim DG, Kim DH, Yoon HS, Swift K, Matayoshi ED, Oltersdorf T, Fesik SW: Solution structure of the antiapoptotic protein bcl-2. Proc Natl Acad Sci USA 98: 3012–3017, 2001

    Article  PubMed  Google Scholar 

  29. Antonsson B, Conti F, Ciavatta A, Montessuit S, Lewis S, Martinou I, Bernasconi L, Bernard A, Mermod JJ, Mazzei G, Maundrell K, Gambale F, Sadoul R, Martinou JC: Inhibition of Bax channel-forming activity by Bcl-2. Science 277: 370–372, 1997

    PubMed  Google Scholar 

  30. Schlesinger PH, Gross A, Yin XM, Yamamoto K, Saito M, Waksman G, Korsmeyer SJ: Comparison of the ion channel characteristics of proapoptotic BAX and antiapoptotic BCL-2. Proc Natl Acad Sci USA 94: 11357–11362, 1997

    Article  PubMed  Google Scholar 

  31. Minn AJ, Velez P, Schendel SL, Liang H, Muchmore SW, Fesik SW, Fill M, Thompson CB: Bcl-x(L) forms an ion channel in synthetic lipid membranes. Nature 385: 353–357, 1997

    Article  PubMed  Google Scholar 

  32. Roucou X, Rostovtseva T, Montessuit S, Martinou J-C, Antonsson B: Bid induces cytochroms c impermeable Bax channels in liposomes. Biochem J: 2002

  33. Basanez G, Nechushtan A, Drozhinin O, Chanturiya A, Choe E, Tutt S, Wood KA, Hsu Y, Zimmerberg J, Youle RJ: Bax, but not Bcl-xL, decreases the lifetime of planar phospholipid bilayer membranes at subnanomolar concentrations. Proc Natl Acad Sci USA 96: 5492–5497, 1999

    Article  PubMed  Google Scholar 

  34. Antonsson B, Montessuit S, Lauper S, Eskes R, Martinou JC: Bax oligomerization is required for channel-forming activity in liposomes and to trigger cytochrome c release from mitochondria. Biochem J 345: 271–278, 2000

    Article  PubMed  Google Scholar 

  35. Saito M, Korsmeyer SJ, Schlesinger PH: BAX-dependent transport of cytochrome c reconstituted in pure liposomes. Nat Cell Biol 2: 553–555, 2000

    Article  PubMed  Google Scholar 

  36. Krajewski S, Mai JK, Krajewska M, Sikorska M, Mossakowski MJ, Reed JC: Upregulation of bax protein levels in neurons following cerebral ischemia. J Neurosci 15: 6364–6376, 1995

    PubMed  Google Scholar 

  37. Ekegren T, Grundstrom E, Lindholm D, Aquilonius SM: Upregulation of Bax protein and increased DNA degradation in ALS spinal cord motor neurons. Acta Neurol Scand 100: 317–321, 1999

    PubMed  Google Scholar 

  38. Gross A, Jockel J, Wei MC, Korsmeyer SJ: Enforced dimerization of BAX results in its translocation, mitochondrial dysfunction and apoptosis. EMBO J 17: 3878–3885, 1998

    Article  PubMed  Google Scholar 

  39. Desagher S, Osen-Sand A, Nichols A, Eskes R, Montessuit S, Lauper S, Maundrell K, Antonsson B, Martinou JC: Bid-induced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis. J Cell Biol 144: 891–901, 1999

    Article  PubMed  Google Scholar 

  40. Nechushtan A, Smith CL, Hsu YT, Youle RJ: Conformation of the Bax C-terminus regulates subcellular location and cell death. EMBO J 18: 2330–2341, 1999

    Article  PubMed  Google Scholar 

  41. Sundararajan R, White E: E1b 19k blocks bax oligomerization and tumor necrosis factor alpha-mediated apoptosis. J Virol 75:7506–7516, 2001

    Article  PubMed  Google Scholar 

  42. Mikhailov V, Mikhailova M, Pulkrabek DJ, Dong Z, Venkatachalam MA, Saikumar P: Bcl-2 prevents bax oligomerization in the mitochondrial outer membrane. J Biol Chem 276: 18361–18374, 2001

    Article  PubMed  Google Scholar 

  43. Griffiths GJ, Dubrez L, Morgan CP, Jones NA, Whitehouse J, Corfe BM, Dive C, Hickman JA: Cell damage-induced conformational changes of the pro-apoptotic protein Bak in vivo precede the onset of apoptosis. J Cell Biol 144: 903–914, 1999

    Article  PubMed  Google Scholar 

  44. Wei MC, Lindsten T, Mootha VK, Weiler S, Gross A, Ashiya M, Thompson CB, Korsmeyer SJ: tBID, a membrane-targeted death ligand, oligomerizes BAK to release cytochrome c. Gene Dev 14: 2060–2071, 2000

    PubMed  Google Scholar 

  45. Schmitz I, Walczak H, Krammer PH, Peter ME: Differences between CD95 type I and II cells detected with the CD95 ligand. Cell Death Differen 6: 821–822, 1999

    Article  Google Scholar 

  46. Wei MC, Zong WX, Cheng EH, Lindsten T, Panoutsakopoulou V, Ross AJ, Roth KA, MacGregor GR, Thompson CB, Korsmeyer SJ: Proapoptotic BAX and BAK: A requisite gateway to mitochondrial dysfunction and death. Science 292: 727–730, 2001

    Article  PubMed  Google Scholar 

  47. Kudla G, Montessuit S, Eskes R, Berrier C, Martinou JC, Ghazi A, Antonsson B: The destabilization of lipid membranes induced by the C-terminal fragment of caspase 8-cleaved bid is inhibited by the Nterminal fragment. J Biol Chem 275: 22713–22718, 2000

    Article  PubMed  Google Scholar 

  48. Verma S, Zhao LJ, Chinnadurai G: Phosphorylation of the pro-apoptotic protein BIK: Mapping of phosphorylation sites and effect on apoptosis. J Biol Chem 276: 4671–4676, 2001

    Article  PubMed  Google Scholar 

  49. Puthalakath H, Huang DC, O'Reilly LA, King SM, Strasser A: The proapoptotic activity of the Bcl-2 family member Bim is regulated by interaction with the dynein motor complex. Mol Cell 3: 287–296, 1999

    Article  PubMed  Google Scholar 

  50. Suzuki Y, Imai Y, Nakayama H, Takahashi K, Takio K, Takahashi R: A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. Mol Cell 8: 613–621, 2001

    Article  PubMed  Google Scholar 

  51. Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD: The release of cytochrome c from mitochondria: A primary site for Bcl-2 regulation of apoptosis Science 275: 1132–1136, 1997

    PubMed  Google Scholar 

  52. Daugas E, Susin SA, Zamzami N, Ferri KF, Irinopoulou T, Larochette N, Prevost MC, Leber B, Andrews D, Penninger J, Kroemer G: Mitochondrio-nuclear translocation of AIF in apoptosis and necrosis. FASEB J 14: 729–739, 2000

    PubMed  Google Scholar 

  53. Verhagen AM, Ekert PG, Pakusch M, Silke J, Connolly LM, Reid GE, Moritz RL, Simpson RJ, Vaux DL: Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102: 43–53, 2000

    Article  Google Scholar 

  54. Du C, Fang M, Li Y, Li L, Wang X: Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102: 33–42, 2000

    Article  Google Scholar 

  55. Li LY, Luo X, Wang X: Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412: 95–99, 2001

    Article  PubMed  Google Scholar 

  56. Kohler C, Gahm A, Noma T, Nakazawa A, Orrenius S, Zhivotovsky B: Release of adenylate kinase 2 from the mitochondrial intermembrane space during apoptosis. FEBS Lett 447: 10–12, 1999

    Article  Google Scholar 

  57. Pavlov EV, Priault M, Pietkiewicz D, Cheng EH, Antonsson B, Manon S, Korsmeyer SJ, Mannella CA, Kinnally KW: A novel, high conductance channel of mitochondria linked to apoptosis in mammalian cells and Bax expression in yeast. J Cell Biol 155: 725–731, 2001

    Article  PubMed  Google Scholar 

  58. Martinou I, Desagher S, Eskes R, Antonsson B, Andre E, Fakan S, Martinou JC: The release of cytochrome c from mitochondria during apoptosis of NGF-deprived sympathetic neurons is a reversible event. J Cell Biol 144: 883–889, 1999

    Article  PubMed  Google Scholar 

  59. Finucane DM, Bossy-Wetzel E, Waterhouse NJ, Cotter TG, Green DR: Bax-induced caspase activation and apoptosis via cytochrome c release from mitochondria is inhibitable by Bcl-xL. J Biol Chem 274: 2225–2233, 1999

    Article  PubMed  Google Scholar 

  60. von Ahsen O, Renken C, Perkins G, Kluck RM, Bossy-Wetzel E, Newmeyer DD: Preservation of mitochondrial structure and function after Bid-or Bax-mediated cytochrome c release. J Cell Biol 150: 1027–1036, 2000

    Article  Google Scholar 

  61. Waterhouse NJ, Goldstein JC, von Ahsen O, Schuler M, Newmeyer DD, Green DR: Cytochrome c maintains mitochondrial transmembrane potential and ATP generation after outer mitochondrial membrane permeabilization during the apoptotic process. J Cell Biol 153: 319–328, 2001

    Article  PubMed  Google Scholar 

  62. Eskes R, Antonsson B, Osen-Sand A, Montessuit S, Richter C, Sadoul R, Mazzei G, Nichols A, Martinou JC: Bax-induced cytochrome C release from mitochondria is independent of the permeability transition pore but highly dependent on Mg2+ ions. J Cell Biol 143: 217–224, 1998

    Article  PubMed  Google Scholar 

  63. Shimizu S, Narita M, Tsujimoto Y: Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 399: 483–487, 1999 [erratum: Nature 407: 767, 2000]

    Article  PubMed  Google Scholar 

  64. Priault M, Chaudhuri B, Clow A, Camougrand N, Manon S: Investigation of bax-induced release of cytochrome c from yeast mitochondria permeability of mitochondrial membranes, role of VDAC and ATP requirement. Eur J Biochem 260: 684–691, 1999

    PubMed  Google Scholar 

  65. Gross A, Pilcher K, Blachly-Dyson E, Basso E, Jockel J, Bassik MC, Korsmeyer SJ, Forte M: Biochemical and genetic analysis of the mitochondrial response of yeast to BAX and BCL-X(L). Mol Cell Biol 20: 3125–3136, 2000

    Article  PubMed  Google Scholar 

  66. Shimizu S, Matsuoka Y, Shinohara Y, Yoneda Y, Tsujimoto Y: Essential role of voltage-dependent anion channel in various forms of apoptosis in mammalian cells. J Cell Biol 152: 237–250, 2001

    Article  PubMed  Google Scholar 

  67. Marzo I, Brenner C, Zamzami N, Susin SA, Beutner G, Brdiczka D, Remy R, Xie ZH, Reed JC, Kroemer G: The permeability transition pore complex: A target for apoptosis regulation by caspases and bcl-2-related proteins. J Exp Med 187: 1261–1271, 1998

    Article  PubMed  Google Scholar 

  68. Halestrap AP, Connern CP, Griffiths EJ, Kerr PM: Cyclosporin A binding to mitochondrial cyclophilin inhibits the permeability transition pore and protects hearts from ischaemia/reperfusion injury. Mol Cell Biochem 174: 167–172, 1997

    Article  PubMed  Google Scholar 

  69. Narita M, Shimizu S, Ito T, Chittenden T, Lutz RJ, Matsuda H, Tsujimoto Y: Bax interacts with the permeability transition pore to induce permeability transition and cytochrome c release in isolated mitochondria. Proc Natl Acad Sci USA 95: 14681–14686, 1998

    Article  PubMed  Google Scholar 

  70. Marzo I, Brenner C, Zamzami N, Jurgensmeier JM, Susin SA, Vieira HL, Prevost MC, Xie Z, Matsuyama S, Reed JC, Kroemer G: Bax and adenine nucleotide translocator cooperate in the mitochondrial control of apoptosis. Science 281: 2027–2031, 1998

    Article  Google Scholar 

  71. Madesh MA: Rapid kinetics of tBid-induced cytochrome c and Smac/DIABLO release and mitochondrial depolarization. J Biol Chem 277: 5651–5659, 2002

    Article  PubMed  Google Scholar 

  72. Mootha VK, Wei MC, Buttle KF, Scorrano L, Panoutsakopoulou V, Mannella CA, Korsmeyer SJ: A reversible component of mitochondrial respiratory dysfunction in apoptosis can be rescued by exogenous cytochrome c. EMBO J 20: 661–671, 2001

    Article  PubMed  Google Scholar 

  73. Nicotera P, Leist M, Ferrando-May E: Intracellular ATP, a switch in the decision between apoptosis and necrosis. Toxicol Lett 102–103: 139–142, 1998

    Article  Google Scholar 

  74. Cortese JD, Voglino AL, Hackenbrock CR: Multiple conformations of physiological membrane-bound cytochrome c. Biochemistry 37: 6402–6409, 1998

    Article  PubMed  Google Scholar 

  75. Bernardi P, Azzone GF: Cytochrome c as an electron shuttle between the outer and inner mitochondrial membranes. J Biol Chem 256: 7187–7192, 1981

    PubMed  Google Scholar 

  76. Frey TG, Mannella CA: The internal structure of mitochondria. Trends Biochem Sci 25: 319–324, 2000

    Article  PubMed  Google Scholar 

  77. Goldstein JC, Waterhouse NJ, Juin P, Evan GI, Green DR: The coordinate release of cytochrome c during apoptosis is rapid, complete and kinetically invariant. Nat Cell Biol 2: 156–162, 2000

    PubMed  Google Scholar 

  78. Ott M, Robertson JD, Gogvadze V, Zhivotovsky B, Orrenius S: Cytochrome c release from mitochondria proceeds by a two-step process. Proc Natl Acad Sci USA 99: 1259–1263, 2002

    Article  PubMed  Google Scholar 

  79. Scorrano L, Ashiya M, Buttle K, Weiler S, Oakes SA, Mannella CA, Korsmeyer SJ: A distinct pathway remodels mitochondrial cristae and mobilizes cytochrome c during apoptosis. Dev Cell 2: 55–67, 2002

    Article  PubMed  Google Scholar 

  80. Zhivotovsky B, Orrenius S, Brustugun OT, Doskeland SO: Injected cytochrome c induces apoptosis Nature 391: 449–450, 1998

    Article  PubMed  Google Scholar 

  81. Bossy-Wetzel E, Newmeyer DD, Green DR: Mitochondrial cytochrome c release in apoptosis occurs upstream of DEVD-specific caspase activation and independently of mitochondrial transmembrane depolarization. EMBO J 17: 37–49, 1998

    Article  Google Scholar 

  82. Li K, Li Y, Shelton JM, Richardson JA, Spencer E, Chen ZJ, Wang X, Williams RS: Cytochrome c deficiency causes embryonic lethality and attenuates stress-induced apoptosis. Cell 101: 389–399, 2000

    Article  PubMed  Google Scholar 

  83. Zou H, Henzel WJ, Liu X, Lutschg A, Wang X: Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90: 405–413, 1997

    Article  PubMed  Google Scholar 

  84. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X: Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91: 479–489, 1997

    Article  Google Scholar 

  85. Zou H, Li Y, Liu X, Wang X: An APAF-1.cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J Biol Chem 274: 11549–11556, 1999

    Article  PubMed  Google Scholar 

  86. Yoshida H, Kong YY, Yoshida R, Elia AJ, Hakem A, Hakem R, Penninger JM, Mak TW: Apaf1 is required for mitochondrial pathways of apoptosis and brain development. Cell 94: 739–750, 1998

    Article  PubMed  Google Scholar 

  87. Honarpour N, Du C, Richardson JA, Hammer RE, Wang X, Herz J: Adult Apaf-1-deficient mice exhibit male infertility. Dev Biol 218: 248–258, 2000

    Article  PubMed  Google Scholar 

  88. Deveraux QL, Roy N, Stennicke HR, Van Arsdale T, Zhou Q, Srinivasula SM, Alnemri ES, Salvesen GS, Reed JC: IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases. EMBO J 17: 2215–2223, 1998

    Article  PubMed  Google Scholar 

  89. Crook NE, Clem RJ, Miller LK: An apoptosis-inhibiting baculovirus gene with a zinc finger-like motif. J Virol 67: 2168–2174, 1993

    PubMed  Google Scholar 

  90. Srinivasula SM, Hegde R, Saleh A, Datta P, Shiozaki E, Chai J, Lee RA, Robbins PD, Fernandes-Alnemri T, Shi Y, Alnemri ES: A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis. Nature 410: 112–116, 2001

    Article  PubMed  Google Scholar 

  91. Chai J, Du C, Wu JW, Kyin S, Wang X, Shi Y: Structural and biochemical basis of apoptotic activation by Smac/DIABLO. Nature 406: 855–862, 2000

    Article  PubMed  Google Scholar 

  92. Wu G, Chai J, Suber TL, Wu JW, Du C, Wang X, Shi Y: Structural basis of IAP recognition by Smac/DIABLO. Nature 408: 1008–1012, 2000

    Article  PubMed  Google Scholar 

  93. Hu SI, Carozza M, Klein M, Nantermet P, Luk D, Crowl RM: Human HtrA, an evolutionarily conserved serine protease identified as a differentially expressed gene product in osteoarthritic cartilage. J Biol Chem 273: 34406–34412, 1998

    Article  PubMed  Google Scholar 

  94. van Loo GvG: The serine protease Omi/HtrA2 is released from mitochondria during apoptosis. Omi interacts with caspase-inhibitor XIAP and induces enhanced caspase activity. Cell Death Differen 9: 20–26, 2002

    Article  Google Scholar 

  95. Hegde R, Srinivasula SM, Zhang Z, Wassell R, Mukattash R, Cilenti L, DuBois G, Lazebnik Y, Zervos AS, Fernandes-Alnemri T, Alnemri ES: Identification of Omi/HtrA2 as a mitochondrial apoptotic serine protease that disrupts inhibitor of apoptosis protein-caspase interaction. J Biol Chem 277: 432–438, 2002

    Article  PubMed  Google Scholar 

  96. Verhagen AM, Silke J, Ekert PG, Pakusch M, Kaufmann H, Connolly LM, Day CL, Tikoo A, Burke R, Wrobel C, Moritz RL, Simpson RJ, Vaux DL: HtrA2 promotes cell death through its serine protease activity and its ability to antagonize inhibitor of apoptosis proteins. J Biol Chem 277: 445–454, 2002

    Article  PubMed  Google Scholar 

  97. Cote J and Ruiz-Carrillo A: Primers for mitochondrial DNA replication generated by endonuclease G. Science 261: 765–769, 1993

    PubMed  Google Scholar 

  98. van Loo GS: Endonuclease G: a mitochondrial protein released in apoptosis and involved in caspase-independent DNA degradation. Cell Death Differen 8: 1136–1142, 2001

    Article  Google Scholar 

  99. Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A, Nagata S: A caspase-activated DNase that degrades DNA during apoptosis, its inhibitor ICAD. Nature 391: 43–50, 1998 [erratum: Nature 393: 396, 1998]

    Article  PubMed  Google Scholar 

  100. Liu X, Zou H, Slaughter C, Wang X: DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell 89: 175–184, 1997

    Article  PubMed  Google Scholar 

  101. Parrish J, Li L, Klotz K, Ledwich D, Wang X, Xue D: Mitochondrial endonuclease G is important for apoptosis in C. elegans. Nature 412: 90–94, 2001

    Article  PubMed  Google Scholar 

  102. Miramar MD, Costantini P, Ravagnan L, Saraiva LM, Haouzi D, Brothers G, Penninger JM, Peleato ML, Kroemer G, Susin SA: NADH oxidase activity of mitochondrial apoptosis-inducing factor. J Biol Chem 276: 16391–16398, 2001

    Article  PubMed  Google Scholar 

  103. Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, Mangion J, Jacotot E, Costantini P, Loeffler M, Larochette N, Goodlett DR, Aebersold R, Siderovski DP, Penninger JM, Kroemer G: Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397: 441–446, 1999

    Article  Google Scholar 

  104. Joza N, Susin SA, Daugas E, Stanford WL, Cho SK, Li CY, Sasaki T, Elia AJ, Cheng HY, Ravagnan L, Ferri KF, Zamzami N, Wakeham A, Hakem R, Yoshida H, Kong YY, Mak TW, Zuniga-Pflucker JC, Kroemer G, Penninger JM: Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature 410: 549–554, 2001

    Article  PubMed  Google Scholar 

  105. Leist M, Single B, Castoldi AF, Kuhnle S, Nicotera P: Intracellular adenosine triphosphate (ATP) concentration: A switch in the decision between apoptosis and necrosis. J Exp Med 185: 1481–1486, 1997

    Article  PubMed  Google Scholar 

  106. Matsuyama S, Llopis J, Deveraux QL, Tsien RY, Reed JC: Changes in intramitochondrial and cytosolic pH: early events that modulate caspase activation during apoptosis. Nat Cell Biol 2: 318–325, 2000

    Article  PubMed  Google Scholar 

  107. Florence A, Guerrero K, Rampal D, Izikki M, Kaambre T, Sikk P, Brdiczka D, Riva-Lavielle C, Olivares J, Longuet M, Antonsson B, Saks VA: Bax and heart mitochondria: uncoupling and inhibition of respiration without permeability transition. Biochim Biophys Acta 1556, 155–167, 2002

    PubMed  Google Scholar 

  108. Harris MH, Vander Heiden MG, Kron SJ, Thompson CB: Role of oxidative phosphorylation in Bax toxicity. Mol Cell Biol 20: 3590–3596, 2000

    Article  PubMed  Google Scholar 

  109. Mootha VK, Wei MC, Buttle KF, Scorrano L, Panoutsakopoulou V, Mannella CA, Korsmeyer SJ: A reversible component of mitochondrial respiratory dysfunction in apoptosis can be rescued by exogenous cytochrome c. EMBO J 20: 661–671, 2001

    Article  PubMed  Google Scholar 

  110. Xue L, Fletcher GC, Tolkovsky AM: Mitochondria are selectively eliminated from eukaryotic cells after blockade of caspases during apoptosis. Curr Biol 11: 361–365, 2001

    Article  PubMed  Google Scholar 

  111. Yuan J, Yankner BA: Apoptosis in the nervous system. Nature 407: 802–809, 2000

    Article  PubMed  Google Scholar 

  112. Kuhlmann T, Lucchinetti C, Zettl UK, Bitsch A, Lassmann H, Bruck W: Bcl-2-expressing oligodendrocytes in multiple sclerosis lesions. GLIA 28: 34–39, 1999

    Article  PubMed  Google Scholar 

  113. Kockx MM, Herman AG: Apoptosis in atherosclerosis: Beneficial or detrimental? Cardiovasc Res 45: 736–746, 2000

    Article  PubMed  Google Scholar 

  114. Yaoita H, Ogawa K, Maehara K, Maruyama Y: Apoptosis in relevant clinical situations: Contribution of apoptosis in myocardial infarction. Cardiovasc Res 45: 630–641, 2000

    Article  PubMed  Google Scholar 

  115. Chandra J, Zhivotovsky B, Zaitsev S, Juntti-Berggren L, Berggren PO, Orrenius S: Role of apoptosis in pancreatic beta-cell death in diabetes. Diabetes 50(suppl 1): S44–S47, 2001

    PubMed  Google Scholar 

  116. Hagiwara CT: Increase in colorectal epithelial apoptotic cells in patients with ulcerative colitis ultimately requiring surgery. J Gastroenterol Hepatol 17: 758–764, 2002

    Article  PubMed  Google Scholar 

  117. Krammer PH: CD95's deadly mission in the immune system. Nature 407: 789–795, 2000

    Article  PubMed  Google Scholar 

  118. Martinou JC, Dubois-Dauphin M, Staple JK, Rodriguez I, Frankowski H, Missotten M, Albertini P, Talabot D, Catsicas S, Pietra C: Overexpression of BCL-2 in transgenic mice protects neurons from naturally occurring cell death and experimental ischemia. Neuron 13: 1017–1030, 1994

    Article  PubMed  Google Scholar 

  119. Fujimura M, Morita-Fujimura Y, Murakami K, Kawase M, Chan PH: Cytosolic redistribution of cytochrome c after transient focal cerebral ischemia in rats. J Cereb Blood Flow Metab 18: 1239–1247, 1998

    Article  PubMed  Google Scholar 

  120. Nitatori T, Sato N, Waguri S, Karasawa Y, Araki H, Shibanai K, Kominami E, Uchiyama Y: Delayed neuronal death in the CA1 pyramidal cell layer of the gerbil hippocampus following transient ischemia is apoptosis. J Neurosci 15: 1001–1011, 1995

    PubMed  Google Scholar 

  121. Antonawich FJ: Translocation of cytochrome c following transient global ischemia in the gerbil. Neurosci Lett 274: 123–126, 1999

    Article  PubMed  Google Scholar 

  122. Hara A, Hirose Y, Wang A, Yoshimi N, Tanaka T, Mori H: Localization of Bax and Bcl-2 proteins, regulators of programmed cell death, in the human central nervous system. Virchows Arch 429: 249–253, 1996

    Article  PubMed  Google Scholar 

  123. Narula J, Pandey P, Arbustini E, Haider N, Narula N, Kolodgie FD, Dal Bello B, Semigran MJ, Bielsa-Masdeu A, Dec GW, Israels S, Ballester M, Virmani R, Saxena S, Kharbanda S: Apoptosis in heart failure: Release of cytochrome c from mitochondria and activation of caspase-3 in human cardiomyopathy. Proc Natl Acad Sci USA 96: 8144–8149, 1999

    Article  PubMed  Google Scholar 

  124. Kockx MM, De Meyer GR, Muhring J, Jacob W, Bult H, Herman AG: Apoptosis and related proteins in different stages of human atherosclerotic plaques. Circulation 97: 2307–2315, 1998

    PubMed  Google Scholar 

  125. Offen D, Kaye JF, Bernard O, Merims D, Coire CI, Panet H, Melamed E, Ben Nun A: Mice overexpressing Bcl-2 in their neurons are resistant to myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE). J Mol Neurosci 15:167–176, 2000

    Article  PubMed  Google Scholar 

  126. Burgmaier G, Schonrock LM, Kuhlmann T, Richter-Landsberg C, Bruck W: Association of increased bcl-2 expression with rescue from tumor necrosis factor-alpha-induced cell death in the oligodendrocyte cell line OLN-93. J Neurochem 75: 2270–2276, 2000

    Article  PubMed  Google Scholar 

  127. Tortosa A, Lopez E, Ferrer I: Bcl-2 and Bax protein expression in Alzheimer's disease. Acta Neuropathol 95: 407–412, 1998

    Article  PubMed  Google Scholar 

  128. Giannakopoulos P, Kovari E, Savioz A, de Bilbao F, Dubois-Dauphin M, Hof PR, Bouras C: Differential distribution of presenilin-1, Bax, and Bcl-X(L) in Alzheimer's disease and frontotemporal dementia. Acta Neuropathol 98: 141–149, 1999

    Article  PubMed  Google Scholar 

  129. MacGibbon GA, Lawlor PA, Sirimanne ES, Walton MR, Connor B, Young D, Williams C, Gluckman P, Faull RL, Hughes P, Dragunow M: Bax expression in mammalian neurons undergoing apoptosis, and in Alzheimer's disease hippocampus. Brain Res Mol Brain Res 750: 223–234, 1997

    Google Scholar 

  130. Tatton NA: Increased caspase 3 and Bax immunoreactivity accompany nuclear GAPDH translocation and neuronal apoptosis in Parkinson's disease. Exp Neurol 166: 29–43, 2000

    Article  PubMed  Google Scholar 

  131. Yin C, Knudson CM, Korsmeyer SJ, Van Dyke T: Bax suppresses tumorigenesis and stimulates apoptosis in vivo. Nature 385: 637–640, 1997

    Article  PubMed  Google Scholar 

  132. Hussain SP, Harris CC: Molecular epidemiology and carcinogenesis: Endogenous and exogenous carcinogens. Mutat Res 462: 311–322, 2000

    Article  PubMed  Google Scholar 

  133. Krajewski S, Blomqvist C, Franssila K, Krajewska M, Wasenius VM, Niskanen E, Nordling S, Reed JC: Reduced expression of proapoptotic gene BAX is associated with poor response rates to combination chemotherapy and shorter survival in women with metastatic breast adenocarcinoma. Cancer Res 55: 4471–4478, 1995

    PubMed  Google Scholar 

  134. Krajewska M, Moss SF, Krajewski S, Song K, Holt PR, Reed JC: Elevated expression of Bcl-X and reduced Bak in primary colorectal adenocarcinomas. Cancer Res 56: 2422–2427, 1996

    PubMed  Google Scholar 

  135. Leist M, Jaattela M: Four deaths and a funeral: From caspases to alternative mechanisms. Nat Rev Mol Cell Biol 2: 589–598, 2001

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antonsson, B. Mitochondria and the Bcl-2 family proteins in apoptosis signaling pathways. Mol Cell Biochem 256, 141–155 (2004). https://doi.org/10.1023/B:MCBI.0000009865.70898.36

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MCBI.0000009865.70898.36

Navigation