Skip to main content
Log in

The impact of vessel and catheter position on the measurement accuracy in catheter-based quantitative coronary angiography

  • Published:
The International Journal of Cardiac Imaging Aims and scope Submit manuscript

Abstract

Background: The calculation of absolute artery dimensions in quantitative coronary angiography is usually carried out by catheter calibration. It is based on the proportional comparison of the dimension of the imaged artery segment to the dimension of the imaged angiographic catheter of known size. This calibration method presumes an identical radiographic magnification between angiographic catheter and artery segment of interest. However, due to the different intrathoracic location of both objects the radiographic magnification or calibration factor is often not identical for a given angiographic projection. The aim of this study was to quantify the magnification error (out-of-plane magnification error) for the major coronary artery segments imaged in frequently used angiographic projections. Methods The intrathoracic spatial location of 468 coronary segments (RCA 196, LAD 156, LCX 116) and their respective coronary catheters were established with biplane angiography and known imaging geometry data. The error in the radiographic magnification or calibration factor was then calculated for all 936 monoplane projections using the spatial coordinates and imaging geometry data. Results The mean magnitude of magnification error was 4% within all 936 measurements. The magnitude and direction of error varied with the lesion localization and the angiographic projection angle (range −12.6% to +10.6%). The error characteristics could be described with six typical error groups by stratifying the data according to the three main coronaries and two angiographic planes. In 24% of measurements, the magnification error exceeded the 5.2% error limit acceptable for reference vessel sizing. Measurements of left coronary arteries were mainly affected by it. Conclusion: The magnification error contributes to the calibration error in measuring arterial dimensions by quantitative angiography. This error may affect the reliability of clinical studies and the proper sizing of interventional devices. These findings could be used to improve current error correction algorithms in order to reduce the effect of the magnification error in measuring arterial dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Serruys PW, de Jaegere P, Kiemeneij F, Macaya C, Rutsch W, Heyndrickx G, Emanuelsson H, Marco J, Legrand V, Materne P, Belardi J, Sigwart U, Colombo A, Goy JJ, Vendenheuvel P, Delcan J, Morel MA, on Behalf of the Benestent Study Group. A Comparison of Balloon-Expandable-Stent Implantation with Balloon Angioplasty in Patients with Coronary Artery Disease. N. Engl J Med 1994; 331: 489-495.

    Google Scholar 

  2. Fishman DL, Leon MB, Baim DS, Schatz RA, Savage MP, Penn IM, Detre K, Veltri L, Ricci D, Nobuyoshi M, Cleman MW, Heuser R, Almond D, Teirstein PS, Fish RD, Colomo A, Brinker J, Moses J, Shaknovich A, Hirshfeld J, Bailey S, Ellis S, Rake R, Goldberg S. A Randomized Comparison of Coronary-Stent Placement and Balloon Angioplasty in the Treatment of Coronary Artery Disease. N Engl J Med 1994; 331: 496-501.

    Google Scholar 

  3. Topol EJ, Leya F, Pinkerton CA, Whitlow PL, Hofling B, Simonton CA, Masden RR, Serruys PW, Leon MB, Williams DO, King SB III, Mark DB, Isner JM, Holmes DR, Ellis SG, Lee KL, Keeler GP, Berdan LG, Hinohora T, Califf RM, for the CAVEAT Study Group. A Comparison of Directional Atherectomy with Coronary Angioplasty in Patients with Coronary Artery Disease. N Engl J Med1993; 329: 221-227.

    Google Scholar 

  4. Faxon DP, on behalf of the MARCATOR Investigators. Angiotensin Converting Enzyme Inhibition and Restenosis: The Final Results of the MARCATOR Trial. Circulation1992; 86, Suppl I: I-53. Abstract.

    Google Scholar 

  5. Reiber JHC, Schiemanck LR, van der Zwet PMJ, Koning G, Goedhard B, Gerbrands JJ, Schalij MJ, Bruschke AVG. QCA: Technical Update 1995. In: De Feyter PJ, di Mario C, Serruys PW. Quantitative Coronary Imaging. 6th International Symposium on Quantitative Coronary Imaging, Rotterdam, June 19-21, 1995. Barjesteh, Meeuwes & Co. Publishers and Printers, 1995.

    Google Scholar 

  6. Desmet W, Willems JL, Vrolix M, van Lierde J, Byttebier G, Piessens J. Intra-and Interobserver Variability of a Fast On-Line Quantitative Coronary Angiographic System. Int J Card Imaging 1993; 9: 249-256.

    Google Scholar 

  7. Reiber JHC, van der Zwet PMJ, Koning G, von Land CD, van Meurs B, Gerbrands JJ, Bois B, van Voorthuisen AE. Accuracy and Precision of Quantitative Digital Coronary Arteriography: Observer-, Short-, and Medium-Term Variabilities. Cath Cardiovasc Diagn 1993; 28: 187-198.

    Google Scholar 

  8. Herrington DM, Walford GA Pearson TA. Issues of Validation in Quantitative Coronary Angiography. In: Reiber JHC, Serruys PW, Eds. New Developments in Quantitative Coronary Arteriography. Kluwer Academic Publishers 1988: 153-166.

  9. Keane D, Haase J, Slager CJ, Montauban van Swinjdregt E, Lehmann KG, Ozaki Y, di Mario C, Kirkeeide R, Serruys PW. Comparative Validation of Quantitative Coronary Angiography Systems. Circulation 1994; 91: 2174-2183.

    Google Scholar 

  10. Leung WH, Demopulos PA, Alderman EL, Sanders W, Stadius M. Evaluation of Catheters and Metallic Catheter Markers as Calibration Standard for Measurement of Coronary Dimension. Cath Cardiovasc Diagn 1990; 21: 148-53. 227

    Google Scholar 

  11. Fortin DF, Spero LA, Cusma JT, Santoro L, Burgess R, Bashore TM. Pitfalls in the Determination of Absolute Dimensions Using Angiographic Catheters as Calibration Devices in Quantitative Angiography. Am J Cardiol 1991; 68: 1176-82.

    Google Scholar 

  12. Koning G, van der Zwet PMJ, von Land CD, Reiber JHC. Angiographic Assessment of Dimensions of 6F and 7F Mallinkrodt Softouch Coronary Contrast Catheters from Digital and Cine Arteriograms. Int J Card Imag 1992; 8: 153-61.

    Google Scholar 

  13. DiMario C, Hermans WRM, Rensing BJ, Serruys PW. Calibration Using Angiographic Catheters as Scaling Devices - Importance of Filming the Catheters Not Filled with Contrast Medium. Am J Card 1992; 69: 1377-78.

    Google Scholar 

  14. Reiber JHC, Kooijman CJ, den Boer A, Serruys PW. Assessment of Dimensions and Image Quality of Contrast Catheters from Cineangiograms. Cath Cardiovasc Diagn 1985; 11: 512-31.

    Google Scholar 

  15. Reiber JHC, Wouter J, van Boven A, van Houdt R, Kong IL, Bruschke AVG. Catheter Sizes for Quantitative Coronary Arteriography. Cath Cardiovasc Diagn 1994; 33: 153-55.

    Google Scholar 

  16. Herrman JPR, Keane D, Ozaki Y, DenBoer A, Serruys PW. Radiological Quality of Coronary Guiding Catheters: A Quantitative Analysis. Cath Cardiovasc Diagn 1994; 33: 55-60.

    Google Scholar 

  17. Reiber JHC, Land CD von, Koning G, Zwet PMJ van der, Houdt RCM von, Schalij MJ, Lespérance J. Comparison of Accuracy and Precision of Quantitative Coronary Arterial Analysis between Cinefilm and Digital Systems. In: Reiber JHC, Serruys PW, Eds. Progress in Quantitative Coronary Arteriography. Kluwer Academic Publishers 1994.

  18. Siebes M, Selzer RH. How Accurate is the Catheter as a Reference for Arterial Dimensions in Quantitative Coronary Angiography? IEEE Comp Cardiol 1985: 9-14.

  19. Reiber JHC, Serruys PW, Slager CJ. Assessment of Dimensions and Image Quality of Coronary Contrast Catheters from Cineangiograms. In: Reiber JHC, Serruys PW, Slager CJ; (eds). Quantitative Coronary and Left Ventricular Cineangiography. Martinus Nijhoff Publishers 1986.

  20. Brown BG, Bolson E, Frimer M, Dodge HT: Quantitative Coronary Arteriography. Estimation of Dimensions, Hemodynamic Resistance, and Atheroma Mass of Coronary Artery Lesions using the Arteriogram and Digital Computation. Circulation 1977; 22: 329-37.

    Google Scholar 

  21. Dodge JT, Brown BG, Bolson EL, Dodge HAT. Intrathoracic Spatial Location of Specified Coronary Segments on the Normal Human Heart. Applications in Quantitative Arteriography, Assessment of Regional Risk and Contraction, and Anatomic Display. Circulation 1988; 78, II: 1167-80.

    Google Scholar 

  22. Wollschläger H, Lee P, Zeiher A, Bonzel T, Just H. Derivation of Spatial Information from Biplane Multidirectional Coronary Angiograms. Med Progr Technol 1986; 11: 57-63.

    Google Scholar 

  23. Solzbach U, Wollschläger H, Zeiher A, Willer B, Philipp A, Just H. Spatial Orientation of Segments of the Coronary Arteries Evaluated from 100 Coronary Angiograms. IEEE Comp Cardiol 1989: 359-62.

  24. Wollschläger H, Lee P, Zeiher A, Solzbach U, Bonzel T, Just HJ. Improvement of Quantitative Angiography by Exact Calculation of Radiological Magnification Factors. IEEE Comp Cardiol 1985: 483-86.

  25. Solzbach U, Oser U, Rombach M, Wollschläger H, Just HJ. Optimum Angiographic Visualization of Coronary Segments Using Computer-Aided 3-D Reconstruction from Biplane Views. Comp Biomed Res 1994; 27: 178-98.

    Google Scholar 

  26. Onnasch DGW, Prause GPM. Geometric Image Correction and Iso-Center Calibration at Oblique Biplane Angiographic Views. IEEE Comp Cardiol 1992: 647-50.

  27. Wunderlich W, Fischer F, Linderer T, Kirkeeide RL. Analytic Isocenter Calibration - A New Approach for Accurate X-ray Gantries. Angiology 1995; 46: 577-82.

    Google Scholar 

  28. Büchi M, Hess OM, Kirkeeide RL, Suter T, Muser M et al. Validation of a New Automatic System for Biplane Quantitative Coronary Arteriography. Int J Card Im 1990; 5: 93-103.

    Google Scholar 

  29. Wollschläger H, Lee P, Zeiher A, Solzbach U, Bonzel T, Just HJ. Mathematical Tools for Spatial Computations with Biplane Isocentric X-ray Equipment. Biomed Techn 1986; 31: 101-6.

    Google Scholar 

  30. Sitomer J, Anselmo EG, Feldt DA, LeFree MT. On Line Mathematical Model of Biplane X-ray Gantry. IEEE Comp Cardiol 1987: 659-62.

  31. Kristiansen G, Wunderlich W, Fischer F, Roehrig B, Arntz HR, Horstkotte D, Schultheiss HP. Accuracy and Precision of the Analytic Calibration Method in Quantitative Coronary Angiography. IEEE Comp Cardiol 1996: 553-556.

  32. Fischer F, Wunderlich W, Horstkotte D, Schultheiss HP. ANGIO-LINK: On-line Acquisition and Assignment of Gantry Geometry Data of Biplane X-ray Systems for. Analytic Angiogram Quantification in the Cathlab. IEEE Comp Cardiol 1997; 24: 533-536

    Google Scholar 

  33. Reiber JHC, Serruys PW, Kooijman CJ, Wijns W, Slager CJ, Gerbrands JJ, Schuurbiers JHC, Den Boer A, Hugenholtz PG. Assessment of Short-, Medium, and Long-Term Variations in Arterial Dimensions from Computer-Assisted Quantitation of Coronary Cineangiograms. Circulation 1985; 71: 280-288.

    Google Scholar 

  34. Reiber JHC, Koning G, Land CD von, Zwet PMJ van. Why and how should QCA systems be validated ? In: Reiber JHC, Serruys PW, (eds). Progress in Quantitative Coronary Arteriography. Kluwer Academic Publishers 1994.

  35. Reiber JHC. Morphologic and densitometric quantitation of coronary stenoses; an overview of existing quantitation techniques. In: Reiber JHC, Serruys PW, (eds). New Developments in Quantitative Coronary Arteriography. Kluwer Academic Publishers 1988.

  36. Haase J, Ozaki Z, DiMario C, Escaned J, DeFeyter PJ, Roelandt JRTC, Serruys PW. Can Intracoronary Ultrasound Correctly Assess the Luminal Dimensions of Coronary Artery Lesions? A Comparison with Quantitative Angiography. Eur Heart J 1995; 16: 112-19.

    Google Scholar 

  37. Roubin GS, Douglas JS, King SB. Influence of Balloon Size on the Initial Success of Percutaneous Transluminal Coronary Angioplasty. Circulation 1988; 78: 557-565.

    Google Scholar 

  38. Nichols AB, Smith R, Berke AD, Shlofmitz RA, Powers ER. Importance of Balloon Size in Coronary Angioplasty. J Am Coll Cardiol 1989; 13: 1094-1100.

    Google Scholar 

  39. Ho DSW, Ming WL, Sriram I, Parks JM, Roubin GS. Sizing the Gianturco-Roubin Coronary Flexible Coil Stent. Cath Cardiovasc Diagn 1994; 32: 242-48.

    Google Scholar 

  40. Dodge JT, Brown BG, Bolson EL, Dodge HT. Lumen Diameter of Normal Human Coronary Arteries. Influence of Age, Sex, Anatomic Variation, and Left Ventricular Hypertrophy or Dilation. Circulation 1992; 86: 232-46.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wunderlich, W., Roehrig, B., Fischer, F. et al. The impact of vessel and catheter position on the measurement accuracy in catheter-based quantitative coronary angiography. Int J Cardiovasc Imaging 14, 217–227 (1998). https://doi.org/10.1023/A:1006067117225

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006067117225

Navigation