Skip to main content
Log in

Neuritic Alterations and Neural System Dysfunction in Alzheimer's Disease and Dementia with Lewy Bodies

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Alzheimer's disease (AD) and dementia with Lewy bodies (DLB) are neurodegenerative disorders that share progressive dementia as the common major clinical symptom. Damages to memory-related brain structures are the likely pathological correlate, and in both illnesses deposition of amyloidogenic proteins are present mainly within these limbic structures. Amyloid-β–positive plaques and phospho-tau–positive neurofibrillary tangles are the main feature of AD and α-synuclein–positive Lewy bodies and Lewy neurites are found in DLB. Interestingly the associated proteins also interfere with synaptic function and synaptic plasticity. Here, we propose that the same neuronal circuits are disturbed within the hippocampal formation in AD and DLB and that in both diseases the associated proteins might lead to changes in synaptic plasticity and function. Thus both classic neuropathological changes and cellular dysfunctions might contribute to the cognitive impairments in AD and DLB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Alzheimer, A. 1907. übereine eigenartige Erkrankung der Hirnrinde. Allg. Z. Psychiatr. Psych.-Gerichtl. Med. 64:146-148.

    Google Scholar 

  2. Glenner, G. G. and Wong, C. W. 1984. Alzheimer's disease: Initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun. 120:885-890.

    PubMed  Google Scholar 

  3. Hyman, B. T., Van Horsen, G. W., Damasio, A. R., and Barnes, C. L. 1984. Alzheimer's disease: Cell-specific pathology isolates the hippocampal formation. Science 225: 1168-1170.

    PubMed  Google Scholar 

  4. Iqbal, K., Grundke-Iqbal, I., Zaidi, T., Merz, P. A., Wen, G. Y., Shaikh, S. S., Wisniewski, H. M., Alafuzoff, I., and Winblad, B. 1986. Defective brain microtubule assembly in Alzheimer's disease. Lancet 2:421-426.

    PubMed  Google Scholar 

  5. Yankner, B. A., Dawes, L. R., Fisher, S., Villa-Komaroff, L., Oster-Granite, M. L., and Neve, R. L. 1989. Neurotoxicity of a fragment of the amyloid precursor associated with Alzheimer's disease. Science 245:417-420.

    PubMed  Google Scholar 

  6. Van Hoesen, G. W. and Hyman, B. T. 1990. Hippocampal formation: Anatomy and the patterns of pathology in Alzheimer's disease. Prog. Brain. Res. 83:445-457.

    PubMed  Google Scholar 

  7. Braak, H. and Braak, E. 1991. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. (Berl.) 82: 239-259.

    Google Scholar 

  8. Goedert, M., Spillantini, M. G., and Crowther, R. A. 1991. Tau proteins and neurofibrillary degeneration. Brain Pathol. 1:279-286.

    PubMed  Google Scholar 

  9. Arriagada, P. V., Marzloff, K., and Hyman, B. T. 1992. Distribution of Alzheimer-type pathologic changes in nondemented elderly individuals matches the pattern in Alzheimer's disease. Neurology 42:1681-1688.

    PubMed  Google Scholar 

  10. Selkoe, D. J. 1994. Alzheimer's disease: A central role for amyloid. J. Neuropathol. Exp. Neurol. 53:438-447.

    PubMed  Google Scholar 

  11. Trojanowski, J. Q., Shin, R. W., Schmidt, M. L., and Lee, V. M. 1995. Relationship between plaques, tangles, and dystrophic processes in Alzheimer's disease. Neurobiol. Aging 16:335-340; discussion 341-335.

    PubMed  Google Scholar 

  12. Hardy, J. 1997. Amyloid, the presenilins and Alzheimer's disease. Trends Neurosci. 20:154-159.

    PubMed  Google Scholar 

  13. Parkinson, J. 1817. An Essy on the Shaking Palsy, London, Neely and Jones.

    Google Scholar 

  14. Lewy, F. 1912. Pages 920-933, in M.A. Lewandowski, G. (eds.), Handbuch der Neurologie, Berlin, Springer Verlag.

    Google Scholar 

  15. Ueda, K., Fukushima, H., Masliah, E., Xia, Y., Iwai, A., Yoshimoto, M., Otero, D. A., Kondo, J., Ihara, Y., and Saitoh, T. 1993. Molecular cloning of cDNA encoding an unrecognized component of amyloid in Alzheimer disease. Proc. Natl. Acad. Sci. USA 90:11282-11286.

    PubMed  Google Scholar 

  16. Polymeropoulos, M. H., Lavedan, C., Leroy, E., Ide, S. E., Dehejia, A., Dutra, A., Pike, B., Root, H., Rubenstein, J., Boyer, R., et al. 1997. Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. Science 276:2045-2047.

    PubMed  Google Scholar 

  17. Spillantini, M. G., Schmidt, M. L., Lee, V. M., Trojanowski, J. Q., Jakes, R., and Goedert, M. 1997. Alpha-synuclein in Lewy bodies. Nature 388:839-840.

    PubMed  Google Scholar 

  18. Irizarry, M. C., Growdon, W., Gomez-Isla, T., Newell, K., George, J. M., Clayton, D. F., and Hyman, B. T. 1998. Nigral and cortical Lewy bodies and dystrophic nigral neurites in Parkinson's disease and cortical Lewy body disease contain alpha-synuclein immunoreactivity. J. Neuropathol. Exp. Neurol. 57:334-337.

    PubMed  Google Scholar 

  19. Kruger, R., Kuhn, W., Muller, T., Woitalla, D., Graeber, M., Kosel, S., Przuntek, H., Epplen, J. T., Schols, L., and Riess, O. 1998. Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson's disease. Nat. Genet. 18:106-108.

    PubMed  Google Scholar 

  20. Clayton, D. F. and George, J. M. 1999. Synucleins in synaptic plasticity and neurodegenerative disorders. J. Neurosci. Res. 58:120-129.

    PubMed  Google Scholar 

  21. Baba, M., Nakajo, S., Tu, P. H., Tomita, T., Nakaya, K., Lee, V. M., Trojanowski, J. Q., and Iwatsubo, T. 1998. Aggregation of alpha-synuclein in Lewy bodies of sporadic Parkinson's disease and dementia with Lewy bodies. Am. J. Pathol. 152:879-884.

    PubMed  Google Scholar 

  22. Gomez-Tortosa, E., Ingraham, A. O., Irizarry, M. C., and Hyman, B. T. 1998. Dementia with Lewy bodies. J. Am. Geriatr. Soc. 46:1449-1458.

    PubMed  Google Scholar 

  23. Spillantini, M. G., Crowther, R. A., Jakes, R., Hasegawa, M., and Goedert, M. 1998. Alpha-synuclein in filamentous inclusions of Lewy bodies from Parkinson's disease and dementia with lewy bodies. Proc. Natl. Acad. Sci. USA 95:6469-6473.

    PubMed  Google Scholar 

  24. Rosene, D. L. and Van Hoesen, G. W. 1987. The hippocampal formation of the primate brain. Pages 345-456, in Peters, A. and Jones, E. G. (eds.), Cerebral Cortex, New York, Plenum Press.

    Google Scholar 

  25. Squire, L. R. and Zola-Morgan, S. 1991. The medial temporal lobe memory system. Science 253:1380-1386.

    PubMed  Google Scholar 

  26. Van Hoesen, G. W. and Pandya, D. N. 1975. Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey: III. Efferent connections. Brain Res. 95:39-59.

    PubMed  Google Scholar 

  27. Steward, O. 1976. Topographic organization of the projections from the entorhinal area to the hippocampal formation of the rat. J. Comp. Neurol. 167:285-314.

    PubMed  Google Scholar 

  28. Van Hoesen, G. W., Rosene, D. L., and Mesulam, M. M. 1979. Subicular input from temporal cortex in the rhesus monkey. Science 205:608-610.

    PubMed  Google Scholar 

  29. Van Hoesen, G. W. 1985. Neural systems of the non-human primate forebrain implicated in memory. Ann. N Y Acad. Sci. 444:97-112.

    PubMed  Google Scholar 

  30. Lynch, G., Matthews, D. A., Mosko, S., Parks, T., and Cotman, C. W. 1972. Induced acetylcholinesterase-rich layer in rat dentate gyrus following entorhinal lesions. Brain Res. 42:311-318.

    PubMed  Google Scholar 

  31. Cotman, C. W., Matthews, D. A., Taylor, D., and Lynch, G. 1973. Synaptic rearrangement in the dentate gyrus: Histochemical evidence of adjustments after lesions in immature and adult rats. Proc. Natl. Acad. Sci. USA 70:3473-3477.

    PubMed  Google Scholar 

  32. Storm-Mathisen, J. 1974. Choline acetyltransferase and acetylcholinesterase in fascia dentata following lesion of the entorhinal afferents. Brain Res. 80:181-197.

    PubMed  Google Scholar 

  33. Hyman, B. T., Kromer, L. J., and Van Hoesen, G. W. 1987. Reinnervation of the hippocampal perforant pathway zone in Alzheimer's disease. Ann. Neurol. 21:259-267.

    PubMed  Google Scholar 

  34. Cotman, C. W. and Nieto-Sampedro, M. 1982. Brain function, synapse renewal, and plasticity. Annu. Rev. Psychol. 33:371-401.

    PubMed  Google Scholar 

  35. Cotman, C. W. and Nieto-Sampedro, M. 1984. Cell biology of synaptic plasticity. Science 225:1287-1294.

    PubMed  Google Scholar 

  36. Cotman, C. W., Nieto-Sampedro, M., and Gibbs, R. B. 1984. Enhancing the self-repairing potential of the CNS after injury. Cent. Nerv. Syst. Trauma 1:3-14.

    PubMed  Google Scholar 

  37. Cotman, C. W. and Anderson, K. J. 1988. Synaptic plasticity and functional stabilization in the hippocampal formation: Possible role in Alzheimer's disease. Adv. Neurol. 47:313-335.

    PubMed  Google Scholar 

  38. Hyman, B. T., Van Hoesen, G. W., Kromer, L. J., and Damasio, A. R. 1986. Perforant pathway changes and the memory impairment of Alzheimer's disease. Ann. Neurol. 20:472-481.

    PubMed  Google Scholar 

  39. Arnold, S. E., Hyman, B. T., Flory, J., Damasio, A. R., and Van Hoesen, G. W. 1991. The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer's disease. Cereb. Cortex 1:103-116.

    PubMed  Google Scholar 

  40. Van Hoesen, G. W., Hyman, B. T., and Damasio, A. R. 1991. Entorhinal cortex pathology in Alzheimer's disease. Hippocampus 1:1-8.

    PubMed  Google Scholar 

  41. Geddes, J. W., Monaghan, D. T., Cotman, C. W., Lott, I. T., Kim, R. C., and Chui, H. C. 1985. Plasticity of hippocampal circuitry in Alzheimer's disease. Science 230:1179-1181.

    PubMed  Google Scholar 

  42. Arriagada, P. V., Growdon, J. H., Hedley-Whyte, E. T., and Hyman, B. T. 1992. Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer's disease. Neurology 42:631-639.

    PubMed  Google Scholar 

  43. Hyman, B. T., Van Hoesen, G. W., Wolozin, B. L., Davies, P., Kromer, L. J., and Damasio, A. R. 1988. Alz-50 antibody recognizes Alzheimer-related neuronal changes. Ann. Neurol. 23:371-379.

    PubMed  Google Scholar 

  44. Knowles, R. B., Wyart, C., Buldyrev, S. V., Cruz, L., Urbanc, B., Hasselmo, M. E., Stanley, H. E., and Hyman, B. T. 1999. Plaque-induced neurite abnormalities: Implications for disruption of neural networks in Alzheimer's disease. Proc. Natl. Acad. Sci. USA 96:5274-5279.

    PubMed  Google Scholar 

  45. Cotman, C. W. 1998. Apoptosis decision cascades and neuronal degeneration in Alzheimer's disease. Neurobiol. Aging 19: S29-S32.

    PubMed  Google Scholar 

  46. Wilson, C. A., Doms, R. W., and Lee, V. M. 1999. Intracellular APP processing and A beta production in Alzheimer disease. J. Neuropathol. Exp. Neurol. 58:787-794.

    PubMed  Google Scholar 

  47. Yankner, B. A. 1996. Mechanisms of neuronal degeneration in Alzheimer's disease. Neuron 16:921-932.

    PubMed  Google Scholar 

  48. Hyman, B. T., Marzloff, K., and Arriagada, P. V. 1993. The lack of accumulation of senile plaques or amyloid burden in Alzheimer's disease suggests a dynamic balance between amyloid deposition and resolution. J. Neuropathol. Exp. Neurol. 52:594-600.

    PubMed  Google Scholar 

  49. Gomez-Isla, T., Price, J. L., McKeel, D. W., Jr., Morris, J. C., Growdon, J. H., and Hyman, B. T. 1996. Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer's disease. J. Neurosci. 16:4491-4500.

    PubMed  Google Scholar 

  50. Stephan, A., Laroche, S., and Davis, S. 2001. Generation of aggregated beta-amyloid in the rat hippocampus impairs synaptic transmission and plasticity and causes memory deficits. J. Neurosci. 21:5703-5714.

    PubMed  Google Scholar 

  51. Lambert, M. P., Barlow, A. K., Chromy, B. A., Edwards, C., Freed, R., Liosatos, M., Morgan, T. E., Rozovsky, I., Trommer, B., Viola, K. L., et al. 1998. Diffusible, nonfibrillar ligands derived from Abeta l-142 are potent central nervous system neurotoxins. Proc. Natl. Acad. Sci. USA 95:6448-6453.

    PubMed  Google Scholar 

  52. Hartley, D. M., Walsh, D. M., Ye, C. P., Diehl, T., Vasquez, S., Vassilev, P. M., Teplow, D. B., and Selkoe, D. J. 1999. Protofibrillar intermediates of amyloid beta-protein induce acute electrophysiological changes and progressive neurotoxicity in cortical neurons. J. Neurosci. 19:8876-8884.

    PubMed  Google Scholar 

  53. Holcomb, L. A., Gordon, M. N., Jantzen, P., Hsiao, K., Duff, K., and Morgan, D. 1999. Behavioral changes in transgenic mice expressing both amyloid precursor protein and presenilin-1 mutations: Lack of association with amyloid deposits. Behav. Genet. 29:177-185.

    PubMed  Google Scholar 

  54. Hsia, A. Y., Masliah, E., McConlogue, L., Yu, G. Q., Tatsuno, G., Hu, K., Kholodenko, D., Malenka, R. C., Nicoll, R. A., and Mucke, L. 1999. Plaque-independent disruption of neural circuits in Alzheimer's disease mouse models. Proc. Natl. Acad. Sci. USA 96:3228-3233.

    PubMed  Google Scholar 

  55. Lue, L. F., Kuo, Y. M., Roher, A. E., Brachova, L., Shen, Y., Sue, L., Beach, T., Kurth, J. H., Rydel, R. E., and Rogers, J. 1999. Soluble amyloid beta peptide concentration as a predictor of synaptic change in Alzheimer's disease. Am. J. Pathol. 155: 853-862.

    PubMed  Google Scholar 

  56. McLean, C. A., Cherny, R. A., Fraser, F. W., Fuller, S. J., Smith, M. J., Beyreuther, K., Bush, A. I., and Masters, C. L. 1999. Soluble pool of Abeta amyloid as a determinant of severity of neu-rodegeneration in Alzheimer's disease. Ann. Neurol. 46:860-866.

    PubMed  Google Scholar 

  57. Mucke, L., Masliah, E., Yu, G. Q., Mallory, M., Rockenstein, E. M., Tatsuno, G., Hu, K., Kholodenko, D., Johnson-Wood, K., and McConlogue, L. 2000. High-level neuronal expression of abeta 1-42 in wild-type human amyloid protein precursor transgenic mice: Synaptotoxicity without plaque formation. J. Neurosci. 20: 4050-4058.

    PubMed  Google Scholar 

  58. Klein, W. L., Krafft, G. A., and Finch, C. E. 2001. Targeting small abeta oligomers: The solution to an Alzheimer's disease conundrum? Trends Neurosci. 24:219-224.

    PubMed  Google Scholar 

  59. Walsh, D. M., Hartley, D. M., Condron, M. M., Selkoe, D. J., and Teplow, D. B. 2001. In vitro studies of amyloid beta-protein fibril assembly and toxicity provide clues to the aetiology of Flemish variant (Ala692—>Gly) Alzheimer's disease. Biochem. J. 355:869-877.

    PubMed  Google Scholar 

  60. Walsh, D. M., Klyubin, I., Fadeeva, J. V., Rowan, M. J., and Selkoe, D. J. 2002. Amyloid-beta oligomers: Their production, toxicity and therapeutic inhibition. Biochem. Soc. Trans. 30:552-557.

    PubMed  Google Scholar 

  61. Buell, S. J. and Coleman, P. D. 1979. Dendritic growth in the aged human brain and failure of growth in senile dementia. Science 206:854-856.

    PubMed  Google Scholar 

  62. Scheibel, A. B. and Tomiyasu, U. 1978. Dendritic sprouting in Alzheimer's presenile dementia. Exp. Neurol. 60:1-8.

    PubMed  Google Scholar 

  63. Masliah, E., Mallory, M., Hansen, L., Alford, M., Albright, T., DeTeresa, R., Terry, R., Baudier, J., and Saitoh, T. 1991. Patterns of aberrant sprouting in Alzheimer's disease. Neuron 6:729-739.

    PubMed  Google Scholar 

  64. Seabrook, G. R., Smith, D. W., Bowery, B. J., Easter, A., Reynolds, T., Fitzjohn, S. M., Morton, R. A., Zheng, H., Dawson, G. R., Sirinathsinghji, D. J., et al. 1999. Mechanisms contributing to the deficits in hippocampal synaptic plasticity in mice lacking amyloid precursor protein. Neuropharmacology 38:349-359.

    PubMed  Google Scholar 

  65. Mucke, L., Masliah, E., Johnson, W. B., Ruppe, M. D., Alford, M., Rockenstein, E. M., Forss-Petter, S., Pietropaolo, M., Mallory, M., and Abraham, C. R. 1994. Synaptotrophic effects of human amyloid beta protein precursors in the cortex of transgenic mice. Brain Res. 666:151-167.

    PubMed  Google Scholar 

  66. Chapman, P. F., White, G. L., Jones, M. W., Cooper-Blacketer, D., Marshall, V. J., Irizarry, M., Younkin, L., Good, M. A., Bliss, T. V., Hyman, B. T., et al. 1999. Impaired synaptic plasticity and learning in aged amyloid precursor protein transgenic mice. Nat. Neurosci. 2:271-276.

    PubMed  Google Scholar 

  67. Chen, Q. S., Wei, W. Z., Shimahara, T., and Xie, C. W. 2002. Alzheimer amyloid beta-peptide inhibits the late phase of long-term potentiation through calcineurin-dependent mechanisms in the hippocampal dentate gyrus. Neurobiol. Learn. Mem. 77: 354-371.

    PubMed  Google Scholar 

  68. Walsh, D. M., Klyubin, I., Fadeeva, J. V., Cullen, W. K., Anwyl, R., Wolfe, M. S., Rowan, M. J., and Selkoe, D. J. 2002. Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416:535-539.

    PubMed  Google Scholar 

  69. McKeith, I. G., Galasko, D., Kosaka, K., Perry, E. K., Dickson, D. W., Hansen, L. A., Salmon, D. P., Lowe, J., Mirra, S. S., Byrne, E. J., et al. 1996. Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): Report of the consortium on DLB international workshop. Neurology 47:1113-1124.

    PubMed  Google Scholar 

  70. McLean, P. J., Gomez-Tortosa, E., Irizarry, M., and Hyman, B. T. 2002. Dementia with Lewy bodies. Pages 267-282, in A. K. Asbury, G. M. McKahnn, W. I. McDonald, P. J. Goadsby, and J. C. McArthur (eds.), Diseases of the Nervous System: Clinical Neuroscience and Therapeutic Principles, ed. 3, Cambridge, U. K., Cambridge University Press.

    Google Scholar 

  71. Lippa, C. F., Smith, T. W., and Swearer, J. M. 1994. Alzheimer's disease and Lewy body disease: A comparative clinicopathological study. Ann. Neurol. 35:81-88.

    PubMed  Google Scholar 

  72. Gomez-Isla, T., Growdon, W. B., McNamara, M., Newell, K., Gomez-Tortosa, E., Hedley-Whyte, E. T., and Hyman, B. T. 1999. Clinicopathologic correlates in temporal cortex in dementia with Lewy bodies. Neurology 53:2003-2009.

    PubMed  Google Scholar 

  73. Gomez-Tortosa, E., Newell, K., Irizarry, M. C., Sanders, J. L., and Hyman, B. T. 2000. Alpha-synuclein immunoreactivity in dementia with Lewy bodies: Morphological staging and comparison with ubiquitin immunostaining. Acta Neuropathol. (Berl.) 99:352-357.

    Google Scholar 

  74. Harding, A. J., Lakay, B., and Halliday, G. M. 2002. Selective hippocampal neuron loss in dementia with Lewy bodies. Ann. Neurol. 51:125-128.

    PubMed  Google Scholar 

  75. Buldyrev, S. V., Cruz, L., Gomez-Isla, T., Gomez-Tortosa, E., Havlin, S., Le, R., Stanley, H. E., Urbanc, B., and Hyman, B. T. 2000. Description of microcolumnar ensembles in association cortex and their disruption in Alzheimer and Lewy body dementias. Proc. Natl. Acad. Sci. USA 97:5039-5043.

    PubMed  Google Scholar 

  76. Dickson, D. W., Ruan, D., Crystal, H., Mark, M. H., Davies, P., Kress, Y., and Yen, S. H. 1991. Hippocampal degeneration differentiates diffuse Lewy body disease (DLBD) from Alzheimer's disease: Light and electron microscopic immunocytochemistry of CA2-3 neurites specific to DLBD. Neurology 41:1402-1409.

    PubMed  Google Scholar 

  77. Pellise, A., Roig, C., Barraquer-Bordas, L. I., and Ferrer, I. 1996. Abnormal, ubiquitinated cortical neurites in patients with diffuse Lewy body disease. Neurosci. Lett. 206:85-88.

    PubMed  Google Scholar 

  78. Gomez-Tortosa, E., Irizarry, M. C., Gomez-Isla, T., and Hyman, B. T. 2000. Clinical and neuropathological correlates of dementia with Lewy bodies. Ann. N Y Acad. Sci. 920:9-15.

    PubMed  Google Scholar 

  79. Galvin, J. E., Uryu, K., Lee, V. M., and Trojanowski, J. Q. 1999. Axon pathology in Parkinson's disease and Lewy body dementia hippocampus contains alpha-, beta-, and gamma-synuclein. Proc. Natl. Acad. Sci. USA 96:13450-13455.

    PubMed  Google Scholar 

  80. Clayton, D. F. and George, J. M. 1998. The synucleins: A family of proteins involved in synaptic function, plasticity, neurodegen-eration and disease. Trends Neurosci. 21:249-254.

    PubMed  Google Scholar 

  81. Gai, W. P., Yuan, H. X., Li, X. Q., Power, J. T., Blumbergs, P. C., and Jensen, P. H. 2000. In situ and in vitro study of colocalization and segregation of alpha-synuclein, ubiquitin, and lipids in Lewy bodies. Exp. Neurol. 166:324-333.

    PubMed  Google Scholar 

  82. Goedert, M. 2001. Alpha-synuclein and neurodegenerative diseases. Nat. Rev. Neurosci. 2:492-501.

    PubMed  Google Scholar 

  83. Kuzuhara, S., Mori, H., Izumiyama, N., Yoshimura, M., and Ihara, Y. 1988. Lewy bodies are ubiquitinated: A light and electron microscopic immunocytochemical study. Acta Neuropathol. (Berl.) 75:345-353.

    Google Scholar 

  84. Ii, K., Ito, H., Tanaka, K., and Hirano, A. 1997. Immunocytochemical co-localization of the proteasome in ubiquitinated structures in neurodegenerative diseases and the elderly. J. Neuropathol. Exp. Neurol. 56:125-131.

    PubMed  Google Scholar 

  85. Auluck, P. K., Chan, H. Y., Trojanowski, J. Q., Lee, V. M., and Bonini, N. M. 2002. Chaperone suppression of alpha-synuclein toxicity in a Drosophila model for Parkinson's disease. Science 295:865-868.

    PubMed  Google Scholar 

  86. McLean, P. J., Kawamata, H., Shariff, S., Hewett, J., Sharma, N., Ueda, K., Breakefield, X. O., and Hyman, B. T. 2002. TorsinA and heat shock proteins act as molecular chaperones: Suppression of alpha-synuclein aggregation. J. Neurochem. 83:846-854.

    PubMed  Google Scholar 

  87. Galvin, J. E., Lee, V. M., Baba, M., Mann, D. M., Dickson, D. W., Yamaguchi, H., Schmidt, M. L., Iwatsubo, T., and Trojanowski, J. O. 1997. Monoclonal antibodies to purified cortical Lewy bodies recognize the mid-size neurofilament subunit. Ann. Neurol. 42:595-603.

    PubMed  Google Scholar 

  88. Masliah, E., Iwai, A., Mallory, M., Ueda, K., and Saitoh, T. 1996. Altered presynaptic protein NACP is associated with plaque formation and neurodegeneration in Alzheimer's disease. Am. J. Pathol. 148:201-210.

    PubMed  Google Scholar 

  89. Perrin, R. J., Woods, W. S., Clayton, D. F., and George, J. M. 2000. Interaction of human alpha-synuclein and Parkinson's disease variants with phospholipids: Structural analysis using site-directed mutagenesis. J. Biol. Chem. 275:34393-34398.

    PubMed  Google Scholar 

  90. Crowther, R. A., Jakes, R., Spillantini, M. G., and Goedert, M. 1998. Synthetic filaments assembled from C-terminally truncated alpha-synuclein. FEBS Lett. 436:309-312.

    PubMed  Google Scholar 

  91. El-Agnaf, O. M., Jakes, R., Curran, M. D., Middleton, D., Ingenito, R., Bianchi, E., Pessi, A., Neill, D., and Wallace, A. 1998. Aggregates from mutant and wild-type alpha-synuclein proteins and NAC peptide induce apoptotic cell death in human neuroblastoma cells by formation of beta-sheet and amyloid-like filaments. FEBS Lett. 440:71-75.

    PubMed  Google Scholar 

  92. Narhi, L., Wood, S. J., Steavenson, S., Jiang, Y., Wu, G. M., Anafi, D., Kaufman, S. A., Martin, F., Sitney, K., Denis, P., et al. 1999. Both familial Parkinson's disease mutations accelerate alpha-synuclein aggregation. J. Biol. Chem. 274:9843-9846.

    PubMed  Google Scholar 

  93. Giasson, B. I., Murray, I. V., Trojanowski, J. Q., and Lee, V. M. 2001. A hydrophobic stretch of 12 amino acid residues in the middle of alpha-synuclein is essential for filament assembly. J. Biol. Chem. 276:2380-2386.

    PubMed  Google Scholar 

  94. Conway, K. A., Harper, J. D., and Lansbury, P. T. 1998. Accelerated in vitro fibril formation by a mutant alpha-synuclein linked to early-onset Parkinson disease. Nat. Med. 4:1318-1320.

    PubMed  Google Scholar 

  95. Serpell, L. C., Berriman, J., Jakes, R., Goedert, M., and Crowther, R. A. 2000. Fiber diffraction of synthetic alpha-synuclein filaments shows amyloid-like cross-beta conformation. Proc. Natl. Acad. Sci. USA 97:4897-4902.

    PubMed  Google Scholar 

  96. Conway, K. A., Rochet, J. C., Bieganski, R. M., and Lansbury, P. T., Jr. 2001. Kinetic stabilization of the alpha-synuclein protofibril by a dopamine-alpha-synuclein adduct. Science 294:1346-1349.

    PubMed  Google Scholar 

  97. Li, J., Uversky, V. N., and Fink, A. L. 2001. Effect of familial Parkinson's disease point mutations A30P and A53T on the structural properties, aggregation, and fibrillation of human alpha-synuclein. Biochemistry 40:11604-11613.

    PubMed  Google Scholar 

  98. McLean, P. J., Kawamata, H., and Hyman, B. T. 2001. Alpha-synuclein-enhanced green fluorescent protein fusion proteins form proteasome sensitive inclusions in primary neurons. Neuroscience 104:901-912.

    PubMed  Google Scholar 

  99. El-Agnaf, O. M., Jakes, R., Curran, M. D., and Wallace, A. 1998. Effects of the mutations Ala30 to Pro and Ala53 to Thr on the physical and morphological properties of alpha-synuclein, protein implicated in Parkinson's disease. FEBS Lett. 440:67-70.

    PubMed  Google Scholar 

  100. Wood, S. J., Wypych, J., Steavenson, S., Louis, J. C., Citron, M., and Biere, A. L. 1999. Alpha-synuclein fibrillogenesis is nucleation-dependent: Implications for the pathogenesis of Parkinson's disease. J. Biol. Chem. 274:19509-19512.

    PubMed  Google Scholar 

  101. Uversky, V. N., Lee, H. J., Li, J., Fink, A. L., and Lee, S. J. 2001. Stabilization of partially folded conformation during α-synuclein oligomerization in both purified and cytosolic preparations. J. Biol. Chem. 5:5.

    Google Scholar 

  102. Weinreb, P. H., Zhen, W., Poon, A. W., Conway, K. A., and Lansbury, P. T., Jr. 1996. NACP, a protein implicated in Alzheimer's disease and learning, is natively unfolded. Biochemistry 35:13709-13715.

    PubMed  Google Scholar 

  103. Kim, J. 1997. Evidence that the precursor protein of non-A beta component of Alzheimer's disease amyloid (NACP) has an extended structure primarily composed of random-coil. Mol. Cells 7:78-83.

    PubMed  Google Scholar 

  104. Davidson, W. S., Jonas, A., Clayton, D. F., and George, J. M. 1998. Stabilization of alpha-synuclein secondary structure upon binding to synthetic membranes. J. Biol. Chem. 273: 9443-9449.

    PubMed  Google Scholar 

  105. McLean, P. J., Kawamata, H., Ribich, S., and Hyman, B. T. 2000. Membrane association and protein conformation of alpha-synuclein in intact neurons: Effect of Parkinson's disease-linked mutations. J. Biol. Chem. 275:8812-8816.

    PubMed  Google Scholar 

  106. McLean, P. J., Ribich, S., and Hyman, B. T. 2000. Subcellular localization of alpha-synuclein in primary neuronal cultures: Effect of missense mutations. J. Neural. Transm. Suppl. 58:53-63.

    PubMed  Google Scholar 

  107. Jakes, R., Spillantini, M. G., and Goedert, M. 1994. Identification of two distinct synucleins from human brain. FEBS Lett. 345:27-32.

    PubMed  Google Scholar 

  108. Irizarry, M. C., Kim, T. W., McNamara, M., Tanzi, R. E., George, J. M., Clayton, D. F., and Hyman, B. T. 1996. Characterization of the precursor protein of the non-A beta component of senile plaques (NACP) in the human central nervous system. J. Neuropathol. Exp. Neurol. 55:889-895.

    PubMed  Google Scholar 

  109. Lavedan, C. 1998. The synuclein family. Genome Res. 8:871-880.

    PubMed  Google Scholar 

  110. Kahle, P. J., Neumann, M., Ozmen, L., Muller, V., Jacobsen, H., Schindzielorz, A., Okochi, M., Leimer, U., van Der Putten, H., Probst, A., et al. 2000. Subcellular localization of wild-type and Parkinson's disease-associated mutant alpha-synuclein in human and transgenic mouse brain. J. Neurosci. 20:6365-6373.

    PubMed  Google Scholar 

  111. Jensen, P. H., Nielsen, M. S., Jakes, R., Dotti, C. G., and Goedert, M. 1998. Binding of alpha-synuclein to brain vesicles is abolished by familial Parkinson's disease mutation. J. Biol. Chem. 273:26292-26294.

    PubMed  Google Scholar 

  112. Jo, E., Fuller, N., Rand, R. P., St George-Hyslop, P., and Fraser, P. E. 2002. Defective membrane interactions of familial Parkinson's disease mutant A30P alpha-synuclein. J. Mol. Biol. 315: 799-807.

    PubMed  Google Scholar 

  113. Colley, W. C., Sung, T. C., Roll, R., Jenco, J., Hammond, S. M., Altshuller, Y., Bar-Sagi, D., Morris, A. J., and Frohman, M. A. 1997. Phospholipase D2, a distinct phospholipase D isoform with novel regulatory properties that provokes cytoskeletal reorganization. Curr. Biol. 7:191-201.

    PubMed  Google Scholar 

  114. Jenco, J. M., Rawlingson, A., Daniels, B., and Morris, A. J. 1998. Regulation of phospholipase D2: Selective inhibition of mammalian phospholipase D isoenzymes by alpha-and beta-synucleins. Biochemistry 37:4901-4909.

    PubMed  Google Scholar 

  115. Murphy, D. D. Rueter, S. M., Trojanowski, J. Q., and Lee, V. M. 2000. Synucleins are developmentally expressed, and alpha-synuclein regulates the size of the presynaptic vesicular pool in primary hippocampal neurons. J. Neurosci. 20:3214-3220.

    PubMed  Google Scholar 

  116. Cabin, D. E., Shimazu, K., Murphy, D., Cole, N. B., Gottschalk, W., McIlwain, K. L., Orrison, B., Chen, A., Ellis, C. E., Paylor, R., et al. 2002. Synaptic vesicle depletion correlates with attenuated synaptic responses to prolonged repetitive stimulation in mice lacking alpha-synuclein. J. Neurosci. 22:8797-8807.

    PubMed  Google Scholar 

  117. Mesulam, M. M. 2000. A plasticity-based theory of the pathogenesis of Alzheimer's disease. Ann. N Y Acad. Sci. 924:42-52.

    PubMed  Google Scholar 

  118. Iwai, A., Masliah, E., Yoshimoto, M., Ge, N., Flanagan, L., de Silva, H. A., Kittel, A., and Saitoh, T. 1995. The precursor protein of non-A beta component of Alzheimer's disease amyloid is a presynaptic protein of the central nervous system. Neuron 14:467-475.

    PubMed  Google Scholar 

  119. Huber, G., Bailly, Y., Martin, J. R., Mariani, J., and Brugg, B. 1997. Synaptic beta-amyloid precursor proteins increase with learning capacity in rats. Neuroscience 80:313-320.

    PubMed  Google Scholar 

  120. Ingelsson, M. and Hyman, B. T. 2002. Disordered proteins in dementia. Ann. Med. 34:259-271.

    PubMed  Google Scholar 

  121. Kamenetz, F., Tomita, T., Hsieh, H., Seabrook, G., Borchelt, D., Iwatsubo, T., Sisodia, S., and Malinow, R. 2003. APP processing and synaptic function. Neuron 37:925-937.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bradley T. Hyman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klucken, J., McLean, P.J., Gomez-Tortosa, E. et al. Neuritic Alterations and Neural System Dysfunction in Alzheimer's Disease and Dementia with Lewy Bodies. Neurochem Res 28, 1683–1691 (2003). https://doi.org/10.1023/A:1026061021946

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026061021946

Navigation