Skip to main content
Log in

The Impact of Genetic Removal of GFAP and/or Vimentin on Glutamine Levels and Transport of Glucose and Ascorbate in Astrocytes

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The importance of the intermediate filament (IF) proteins glial fibrillary acidic protein (GFAP) and vimentin for astrocyte function was studied by investigating astrocytes prepared from GFAP-/-and/or vimentin-/- mice. The rate of glucose uptake through facilitative hexose transporters was not affected by depletion of GFAP or vimentin. Similarly, the absence of these IF proteins did not affect ascorbate uptake, under control or cyclic AMP-stimulated conditions, or ascorbate efflux through volume-sensitive organic anion channels. However, compared with wild-type astrocytes, glutamine concentrations were increased up to 200% in GFAP-/- astrocytes and up to 150% in GFAP+/-astrocytes and this increase was not dependent on the presence of vimentin. GFAP-/- astrocytes in culture still contain IFs (made of vimentin and nestin), whereas GFAP-/-vim-/- cultured astrocytes lack IFs. Thus, glutamine levels appear to correlate inversely with GFAP, rather than depend on the presence of IFs per se. Furthermore, the effect of GFAP is dose-dependent since the glutamine concentration in GFAP+/- astrocytes falls between those in wild-type and GFAP-/-astrocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Kimelberg, H. K.1995.Current concepts of brain edema. Review of laboratory investigations. J.Neurosurg. 83:1051–9.

    Google Scholar 

  2. Wilson, J. X.1997. Antioxidant defense of the brain:a role forastrocytes.Can. J. Physiol Pharmacol.75:1149–63.

    Google Scholar 

  3. Tsacopoulos, M., and Magistretti, P. J.1996. Metabolic coupling between glia and neurons. J. Neurosci.16:877–85.

    Google Scholar 

  4. Walker, P. S., Donovan, J. A., Van Ness, B. G., Fellows, R. E., and Pessin, J. E.1988.Glucose-dependent regulation of glucose transport activity, protein, and mRNA in primary cultures of rat brain glial cells. J.Biol.Chcm. 263:15594–601.

    Google Scholar 

  5. Schousboe, A., Westergaard, N. Waagepetersen, H. S., Larsson, O.M., Bakken, I. J., and Sonnewald, U.1997. Trafficking between glia and neurons of TCA cycle intermediates and related metabolites. Glia. 21:99–105.

    Google Scholar 

  6. Tsacopoulos, M., Poitry-Yamate, C. L., Poitry, S., Perrottet, P., and Veuthey, A. L.1997. The nutritive function of glia is regulated by signals released by neurons. Glia. 21: 84–91.

    Google Scholar 

  7. Siushansian, R., and Wilson, J. X.1995.Ascorbate transport and intracellular concentration in cerebral astrocytes. J.Neurochem. 65: 41–9.

    Google Scholar 

  8. Grunewald, R. A.1993. Ascorbic acid in the brain. Brain Res. Brain Res.Rev. 18. 123–33.

    Google Scholar 

  9. Rebec, G. V., and Pierce, R. C.1994.A vitamin as neuromodulator:ascorbate release into the extracellular fluid of the brain regulates dopaminergic and glutamatergic transmission. Prog. Neurobiol. 43: 537–65.

    Google Scholar 

  10. Henn, F. A., and Hamberger, A.1971. Glial cell function: uptake of transmitter substances. Proc.Natl.Acad.Sci. U SA. 68:2686–90.

    Google Scholar 

  11. Hamberger, A., Cotman, C. W., Sellstrom, A., and Weiler, C. T. 1978. Glutamine, glial cells and their relationship to transmitterglutamate.pp.163–72. In:Schoffeniels E,et al.,ed. Dynamicproperties of glia cells. Oxford, Pergamon Press.

    Google Scholar 

  12. Cooper, A. J., Mora, S. N., Cruz, N. F., and Gelbard, A. S. 1985.Cerebral ammonia metabolism in hyperammonemic rats. J.Neurochem. 44:1716–23.

    Google Scholar 

  13. Eddleston, M., and Mucke, L.1993. Molecular profile of reactive astrocytes — implications for their role in neurologic disease. Neuroscience. 54:15–36.

    Google Scholar 

  14. Lendahl, U., Zimmerman, L. B., and McKay, R. D.1990.CNS stem cells express a new class of intermediate filament protein. Cell. 60: 585–95.

    Google Scholar 

  15. Lin, R.C.S., Matesic, D. F., Marvin, M., McKay, R. D., and Brustle, O.1995. Re-expression of the intermediate filament nestin in reactive astrocytes. Neurobiol.Dis. 2: 79–85.

    Google Scholar 

  16. Weinstein, D. E., Shelanski, M. L., and Liem, R. K.1991.Suppression by antisense mRNA demonstrates a requirement for the glial fibrillary acidic protein in the formation of stable astrocytic processes in response to neurons. J.Cell Biol. 112:1205–13.

    Google Scholar 

  17. Rutka, J. T., and Smith, S. L.1993. Transfection of human astrocytoma cells with glial fibrillary acidic protein complementary DNA: analysis of expression, proliferation, and tumorigenicity. Cancer Res. 53:3624–31.

    Google Scholar 

  18. Chen, W. J., and Liem, R. K.1994.Reexpression of glial fibrillary acidic protein rescues the ability of astrocytoma cells to form processes in response to neurons. J.Cell Biol. 127:813–23.

    Google Scholar 

  19. Pekny, M., Eliasson, C., Chien, C. L., Kindblom, L. G., Liem, R., Hamberger, A., and Betsholtz, C.1998. GFAP-deficient astrocytes are capable of stellation in vitro when cocultured with neurons and exhibit a reduced amount of intermediate filaments and an increased cell saturation density. Exp.Cell Res. 239:332–43.

    Google Scholar 

  20. Pekny, M., Leveen, P., Pekna, M., Eliasson, C., Berthold, C. H., Westermark, B., and Betsholtz, C.1995.Mice lacking glial fibrillary acidic protein display astrocytes devoid of intermediate filaments but develop and reproduce normally. EMBOJ. 14:1590–8.

    Google Scholar 

  21. Gomi, H., Yokoyama, T., Fujimoto, K., Ikeda, T., Katoh, A., Itoh, T., and Itohara, S.1995. Mice devoid of the glial fibrillary acidic protein develop normally and are susceptible to scrapieprions. Neuron. 14:29–41.

    Google Scholar 

  22. Tatzelt, J., Maeda, N., Pekny, M., Yang, S. L., Betsholtz, C., Eliasson, C., Cayetano, J., Camerino, A. P., DeArmond, S. J., and Prusiner, S. B.1996. Scrapie in mice deficient in apolipoproteinE or glial fibrillary acidic protein. Neurology. 47:449–53.

    Google Scholar 

  23. Shibuki, K., Gomi, H., Chen, L., Bao, S., Kim, J. J., Wakatsuki, H., Fujisaki, T., Fujimoto, K., Katoh, A., Ikeda, T., Chen, C., Thompson, R. F., and Itohara, S.1996. Deficient cerebellar long-term depression, impaired eyeblink conditioning, and normal motor coordination in GFAP mutant mice. Neuron. 16: 587–99.

    Google Scholar 

  24. McCall, M. A., Gregg, R. G., Behringer, R. R., Brenner, M., Delaney,C.L., Galbreath, E. J., Zhang, C. L., Pearce, R. A., Chiu, S. Y., and Messing, A.1996. Targeted deletion in astrocyte intermediate filament (Gfap)alters neuronal physiology. Proc. Natl. Acad Sci USA. 93:6361–6.

    Google Scholar 

  25. Liedtke, W., Edelmann, W., Bieri, P. L., Chiu, F. C., Cowan, N. J., Kucherlapati, R., and Raine, C. S.1996. GFAP is necessary for the integrity of CNS white matter architecture and long-term maintenance of myelination. Neuron. 17:607–15.

    Google Scholar 

  26. Pekny, M., Stanness, K. A., Eliasson, C., Betsholtz, C., and Janigro, D. 1998. Impaired induction of blood-brain barrier properties in aortic endothelial ceils by astrocytes from GFAP-deficientmice. Glia. 22:390–400.

    Google Scholar 

  27. Nawashiro, H., Messing, A., Azzam, N., and Brenner, M.1998. Mice lacking GFAP are hypersensitive to traumatic cerebrospinalinjury. Neuroreport. 9:1691–6.

    Google Scholar 

  28. Ding, M., Eliasson, C., Betsholtz, C., Hamberger, A., and Pekny, M.1998. Altered taurine release following hypotonicstress in astrocytes from mice deficient for GFAP and vimentin. Brain Res. Mol. Brain Res. 62:77–81.

    Google Scholar 

  29. Siushansian, R,, Tao, L., Dixon, S. J., and Wilson, J. X.1997. Cerebral astrocytes transport ascorbic acid and dehydroascorbicacid through distinct mechanisms regulated by cyclic AMP. J. Neurochem. 68:2378–85.

    Google Scholar 

  30. Siushansian, R., Dixon, S. J., and Wilson, J. X.1996. Osmotic swelling stimulates ascorbate efflux from cerebral astrocytes. J.Neurochem. 66:1227–33.

    Google Scholar 

  31. Sandberg, M., Hagberg, H., Jacobson, I., Karlsson, B., Lehmann, A., and Hamberger, A.1987. Analysis of amino acids: neurochemical application. Life Sci. 41:829–32.

    Google Scholar 

  32. Wilson, J. X.1989. Ascorbic acid uptake by a high-affinity sodium-dependent mechanism in cultured rat astrocytes. J.Neurochem.53:1064–71.

    Google Scholar 

  33. Wilson, J. X., Jaworski, E. M., and Dixon, S. J.1991. Evidence for electrogenic sodium-dependent ascorbate transport in rat astroglia. Neurochem.Res. 16:73–8.

    Google Scholar 

  34. Naus, C. C., Bechberger, J. F., Caveney, S., and Wilson, J. X. 1991. Expression of gap junction genes in astrocytes and C6 glioma cells. Neurosci.Lett. 126:33–6.

    Google Scholar 

  35. Hillered, L., Persson, L., Bolander, H. G., Hallstrom, A., and Ungerstedt, U.1988. Increased extracellular levels of ascorbate in the striatum after middle cerebral artery occlusion in the rat monitored by intracerebral microdialysis. Neurosci.Lett. 95:286–90.

    Google Scholar 

  36. Hillered, L., Nilsson, P., Ungerstedt, U., and Ponten, U.1990. Trauma-induced increase of extracellular ascorbate in rat cerebral cortex. Neurosci.Lett. 113:328–32.

    Google Scholar 

  37. Landolt, H., Lutz, T. W., Langemann, H., Stauble, D., Mendelowitsch, A., Gratzl, O., and Honegger, C. G.1992. Extracellular antioxidants and amino acids in the cortex of the rat: monitoring by microdialysis of early ischemic changes. J.Cereb. Blood Flow Metab. 12:96–102.

    Google Scholar 

  38. Mason, P. A., Dev, B. R., and Freed, C. R.1995. Ascorbic acid concentration in the lateral hypothalamus is related to plasma osmolality. Brain Res.Bull. 37:305–9.

    Google Scholar 

  39. Law, R. O.1994. Taurine efflux and the regulation of cell volume in incubated slices of rat cerebral cortex. Biochem. Biophys. Acta. 1221:21–8.

    Google Scholar 

  40. Aschner, M., Vitarella, D., Allen, J. W., Conklin, D. R., and Cowan, K. S.1998. Methylmercury-induced inhibition of regulatory volume decrease in astrocytes: characterization of osmoregulator efflux and its reversal by amiloride. Brain Res. 811:133–42.

    Google Scholar 

  41. Weir, M. D., and Thomas, D. G.1984. Effect of dexamethasoneon glutamine synthetase and glial fibrillary acidic protein in normal and transformed astrocytes. Clin.Neuropharmacol. 7:303–6.

    Google Scholar 

  42. Lieth, E., Barber, A. J., Xu, B., Dice, C., Ratz, M. J., Tanase, D., and Strother, J. M.1998. Glial reactivity and impaired glutamate metabolism in short-term experimental diabetic retinopathy. Penn. State Retina Research Group Diabetes. 47:815–20.

    Google Scholar 

  43. Eliasson, C., Sahlgren, C., Berthold C.-H., Stakeberg, J., Cells, J. E., Betsholtz C., Eriksson, J. E., and Pekny, M.1999. Intermediate filament protein partnership in astrocytes. J.Biol.Chem. 274:23996–24006.

    Google Scholar 

  44. Pekny, M., Johansson, C. B., Eliasson, C., Stakeberg, J., Wallen, A., Perlmann, T., Lendahl, U., Betsholtz, C., Berthold, C.-H., and Frisen, J.1999. Abnormal reaction to central nervous system injury in mice lacking glial fibrillary acidic protein and vimetin. J.Cell Biol. 145:503–514.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pekny, M., Eliasson, C., Siushansian, R. et al. The Impact of Genetic Removal of GFAP and/or Vimentin on Glutamine Levels and Transport of Glucose and Ascorbate in Astrocytes. Neurochem Res 24, 1357–1362 (1999). https://doi.org/10.1023/A:1022572304626

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022572304626

Navigation